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Motivation
I There is a growing interest in adopting algorithmic predictions to

advise decision making

I This talk - detection of discriminatory jobs

I Potential tool for regulators such as the Equal Employment
Opportunity Commission (EEOC) which are charged with
preventing and remedying discrimination by individual employers

I Kline and Walters (forthcoming) show that correspondence
experiments sending multiple applications to each job can be used
to detect discrimination by individual employers

I Correspondence experiments can be seen as ensembles of
mini-experiments

I Using these ensembles, we can learn the distribution of
discrimination across jobs, and use Empirical Bayes (EB) methods
to predict the probability a job is discriminating

I Only few apps are required because discriminatory behavior is
highly variable across jobs
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Motivation - cont
I Obstacle: these experiments are costly

I Typically send a fixed number of apps per job

I More apps increase likelihood of detection

I Some jobs have a very low callback probability

I Potential solution: adaptive correspondence experiments
I Similar to dynamic treatment regime to patients in the medical

sciences Chakraborty and Murphy (2014)
I Inspired by research in econometrics that update estimators,

decision rules, and experimental designs in response to realized data
Kasy and Sautmann (forthcoming); Tabord-Meehan (2020)

I Adaptive methods can be useful in other domains where
discrimination is a concern, such as healthcare (Alsan et al., 2019;

Obermeyer et al., 2019) and criminal justice (Arnold et al., 2020; Rose,

forthcoming)
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This paper

I Consider a hypothetical regulator seeking to detect discriminatory
jobs (e.g. the EEOC who is charge of enforcing anti-discrimination
law)

I The auditor draws new vacancies from a known distribution and
sends fictitious applications in attempt to infer the job’s type

I Unlike a static audit experiment, at each step the auditor can
decide whether to keep sending applications, initiate an
investigation, or give up

I Key result: # of apps are cut by more than half without reducing
accuracy of detection
I Giving up early on jobs with very low callback rates, or those that

call black applicants
I Choosing application characteristics optimally
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Model
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A model for callbacks
Following Kline and Walters (forthcoming):

I Callbacks are modeled as iid Bernoulli trials

I Callback probability of job j to applications of race r ∈ {b,w}
with characteristics x :

pjr (x) = Λ(αj − βj1{r = b}+ x ′γ),

where Λ(z) ≡ [1 + exp(−z)]−1.

I (αj , βj) are random coefficients: βj = max{0, β̃j}, with(
αj

β̃j

)
iid∼ N

(
α0

β0
,

[
σ2α ρ
ρ σ2β

])

I Model allows for continuous heterogeneity in callback rates and
discrimination severity, and a mass point at βj = 0
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Fitting the model - Nunley et al. (2015) data

I We estimate the model using data from Nunley et al. (2015)’s
(NPRS) audit experiment

I The NPRS experiment submitted fictitious applications with
racially distinctive names to 2,305 entry-level jobs for college
graduates in the US

I 4 applications per job, typically 2 white and 2 black

I View this as a pilot study, e.g. commissioned by the EEOC
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Maximum Simulated Likelihood estimates
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No correlation between white CB and discrimination severity
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Most jobs don’t call anyone

Pr(pjw < 0.01) ≈ 0.53
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Severe discrimination among a minority of jobs

Pr(βj = 0) ≈ 0.79, E [βj |βj > 0] ≈ 3.6
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The auditor’s problem

I Consider an auditor that knows the parameters of the model

I The auditor’s goal is to find discriminators by sending additional
fictitious apps

I Can send up to 8 apps per job

I Simplify to two quality levels q ∈ {h, l}, corresponding to x ′γ one
SD above and below its mean

I At every step, based on the observed callbacks, the auditor can
decide to send another application, initiate an investigation, or
give up
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The auditor’s problem

I Hn is the auditing history after sending n apps. Includes counts of
apps and callbacks by race and quality

I For example: H4 =

{
sent: (Wl ,Bl ,Wh,Bh) = (1, 0, 2, 1)

CB: (Wl ,Bl ,Wh,Bh) = (0, 0, 2, 0)
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The auditor’s payoff

I Once an investigation is initiated, the job’s true type is revealed,
yielding payoff:

1

2

∑
q∈{h,l}

[pjw (q)− pjb(q)]

︸ ︷︷ ︸
≡Sj

−κ,

where Sj is the severity of discrimination, κ is the cost of investigation,
and q ∈ {h, l} indexes quality

I The auditor cares about the expected number of black callbacks lost
relative to white applicants
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The auditor’s value function

V(Hn)=



max

max
r ,q

vrq (Hn)︸ ︷︷ ︸
send new app

, vI (Hn)︸ ︷︷ ︸
investigate

, 0

 if n < 8,

max

 vI (Hn)︸ ︷︷ ︸
investigate

, 0

 if n = 8.

I Value of sending new app: vrq(Hn) = −c + E[V (Hn+1)|Hn]

I Value of investigation: vI (Hn) = E
[
Sj

∣∣∣∣Hn

]
− κ

I Expectations are evaluated via Bayes’ rule starting with the population
distribution as prior
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Simulation Results

12 / 20



Expected value and optimal strategy after sending one
application (κ = .13, c = 10−4) more

Sent: (0,0,1,0)
CB: (0,0,1,0)

Sent: (0,0,1,0)
CB: (0,0,0,0)

Histories
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Expected value and optimal strategy after sending three
applications (κ = .13, c = 10−4) more

∼ 72% of jobs w/ history (0, 0, 3, 0) and no CBs. If # of jobs = 100, then the
auditor saves 0.72× 5× 100 = 360 apps on average
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Expected value and optimal strategy after sending four
applications (κ = .13, c = 10−4) more

∼ 12% of jobs w/ the two last histories. If # of jobs = 100, then the auditor saves
0.12× 4× 100 = 48 apps on average
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Apps sent vs. sensitivity Investigation probability fixed ∈ [.055, 0.06]
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Apps sent vs. specificity sensitivity fixed ∈ [.14, .145]
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Adaptive auditing catches the worst discriminators

κ = .13, c = 10−4
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Discussion
I Adaptive correspondence experiments have the potential to detect

discrimination more efficiently than static experiments
I Substantial reduction in the number of apps sent
I Achieve the same levels of sensitivity and specificity

I These methods can contribute to other settings (e.g criminal
justice, healthcare, policing and education) to detect
discrimination efficiently

I Potential drawbacks:
I Requires full knowledge of the distribution of callbacks (pilot study)
I Assumes stable callback parameters
I Dynamic programming is computationally expensive, especially as

the dimension of the action space grows

I Potential extensions based on reinforcement learning e.g, Kasy and

Sautmann (forthcoming)
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Thank You!
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Expected value and optimal strategy after sending one app
(κ = .13, c = 10−4)

back
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Expected value and optimal strategy after sending two apps
(κ = .13, c = 10−4)

back
2 / 10



Expected value and optimal strategy after sending three apps
(κ = .13, c = 10−4)

back
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Expected value and optimal strategy after sending four apps
(κ = .13, c = 10−4)

back
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Expected value and optimal strategy after sending five apps
(κ = .13, c = 10−4)

back
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Expected value and optimal strategy after sending six apps
(κ = .13, c = 10−4)

back
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Expected value and optimal strategy after sending seven apps
(κ = .13, c = 10−4)

back
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Expected value after sending eight apps (κ = .13, c = 10−4)

back
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