Adaptive Correspondence Experiments

Hadar Avivi,¹ Patrick Kline,¹ Evan Rose² and Christopher Walters¹

¹UC Berkeley

²Microsoft Research

January 5, 2021

Motivation

- There is a growing interest in adopting algorithmic predictions to advise decision making
 - This talk detection of discriminatory jobs
 - Potential tool for regulators such as the Equal Employment Opportunity Commission (EEOC) which are charged with preventing and remedying discrimination by individual employers
- Kline and Walters (forthcoming) show that correspondence experiments sending multiple applications to each job can be used to detect discrimination by individual employers
 - Correspondence experiments can be seen as ensembles of mini-experiments
 - Using these ensembles, we can learn the distribution of discrimination across jobs, and use Empirical Bayes (EB) methods to predict the probability a job is discriminating
 - Only few apps are required because discriminatory behavior is highly variable across jobs

Motivation

- There is a growing interest in adopting algorithmic predictions to advise decision making
 - This talk detection of discriminatory jobs
 - Potential tool for regulators such as the Equal Employment Opportunity Commission (EEOC) which are charged with preventing and remedying discrimination by individual employers
- Kline and Walters (forthcoming) show that correspondence experiments sending multiple applications to each job can be used to detect discrimination by individual employers
 - Correspondence experiments can be seen as ensembles of mini-experiments
 - Using these ensembles, we can learn the distribution of discrimination across jobs, and use Empirical Bayes (EB) methods to predict the probability a job is discriminating
 - Only few apps are required because discriminatory behavior is highly variable across jobs

Motivation - cont

- Obstacle: these experiments are costly
 - Typically send a fixed number of apps per job
 - More apps increase likelihood of detection
 - Some jobs have a very low callback probability
- **Potential solution:** adaptive correspondence experiments
 - Similar to dynamic treatment regime to patients in the medical sciences Chakraborty and Murphy (2014)
 - Inspired by research in econometrics that update estimators, decision rules, and experimental designs in response to realized data Kasy and Sautmann (forthcoming); Tabord-Meehan (2020)
- Adaptive methods can be useful in other domains where discrimination is a concern, such as healthcare (Alsan et al., 2019; Obermeyer et al., 2019) and criminal justice (Arnold et al., 2020; Rose, forthcoming)

Motivation - cont

- Obstacle: these experiments are costly
 - Typically send a fixed number of apps per job
 - More apps increase likelihood of detection
 - Some jobs have a very low callback probability
- **Potential solution:** adaptive correspondence experiments
 - Similar to dynamic treatment regime to patients in the medical sciences Chakraborty and Murphy (2014)
 - Inspired by research in econometrics that update estimators, decision rules, and experimental designs in response to realized data Kasy and Sautmann (forthcoming); Tabord-Meehan (2020)
- Adaptive methods can be useful in other domains where discrimination is a concern, such as healthcare (Alsan et al., 2019; Obermeyer et al., 2019) and criminal justice (Arnold et al., 2020; Rose, forthcoming)

Motivation - cont

- Obstacle: these experiments are costly
 - Typically send a fixed number of apps per job
 - More apps increase likelihood of detection
 - Some jobs have a very low callback probability
- **Potential solution:** adaptive correspondence experiments
 - Similar to dynamic treatment regime to patients in the medical sciences Chakraborty and Murphy (2014)
 - Inspired by research in econometrics that update estimators, decision rules, and experimental designs in response to realized data Kasy and Sautmann (forthcoming); Tabord-Meehan (2020)

 Adaptive methods can be useful in other domains where discrimination is a concern, such as healthcare (Alsan et al., 2019; Obermeyer et al., 2019) and criminal justice (Arnold et al., 2020; Rose, forthcoming)

This paper

- Consider a hypothetical regulator seeking to detect discriminatory jobs (e.g. the EEOC who is charge of enforcing anti-discrimination law)
- The auditor draws new vacancies from a known distribution and sends fictitious applications in attempt to infer the job's type
- Unlike a static audit experiment, at each step the auditor can decide whether to keep sending applications, initiate an investigation, or give up
- Key result: # of apps are cut by more than half without reducing accuracy of detection
 - Giving up early on jobs with very low callback rates, or those that call black applicants
 - Choosing application characteristics optimally

This paper

- Consider a hypothetical regulator seeking to detect discriminatory jobs (e.g. the EEOC who is charge of enforcing anti-discrimination law)
- The auditor draws new vacancies from a known distribution and sends fictitious applications in attempt to infer the job's type
- Unlike a static audit experiment, at each step the auditor can decide whether to keep sending applications, initiate an investigation, or give up
- Key result: # of apps are cut by more than half without reducing accuracy of detection
 - Giving up early on jobs with very low callback rates, or those that call black applicants
 - Choosing application characteristics optimally

Model

A model for callbacks

Following Kline and Walters (forthcoming):

- Callbacks are modeled as *iid* Bernoulli trials
- Callback probability of job j to applications of race r ∈ {b, w} with characteristics x:

$$p_{jr}(x) = \Lambda(\alpha_j - \beta_j \mathbb{1}\{r = b\} + x'\gamma),$$

where $\Lambda(z) \equiv [1 + exp(-z)]^{-1}$.

• (α_j, β_j) are random coefficients: $\beta_j = max\{0, \tilde{\beta}_j\}$, with

$$\left(\begin{array}{c} \alpha_{j} \\ \tilde{\beta}_{j} \end{array}\right) \stackrel{\textit{iid}}{\sim} \textit{N} \left(\begin{array}{c} \alpha_{0} \\ \beta_{0} \end{array}, \left[\begin{array}{c} \sigma_{\alpha}^{2} & \rho \\ \rho & \sigma_{\beta}^{2} \end{array}\right]\right)$$

Model allows for continuous heterogeneity in callback rates and discrimination severity, and a mass point at β_j = 0 Fitting the model - Nunley et al. (2015) data

 We estimate the model using data from Nunley et al. (2015)'s (NPRS) audit experiment

- The NPRS experiment submitted fictitious applications with racially distinctive names to 2,305 entry-level jobs for college graduates in the US
- ▶ 4 applications per job, typically 2 white and 2 black
- View this as a pilot study, e.g. commissioned by the EEOC

Maximum Simulated Likelihood estimates

	(1)	(2)
α_0	-4.922	-4.918
	(0.234)	(0.234)
σ_{lpha}	4.968	4.963
	(0.240)	(0.240)
β_0	-5.035	-5.022
	(0.176)	(0.329)
σ_{eta}	6.347	6.521
	(0.148)	(0.154)
ρ		-0.013
		(0.017)
Likelihood	-2788.3	-2788.3
Number of jobs	2305	2305

No correlation between white CB and discrimination severity

	(1)	(2)
α_0	-4.922	-4.918
	(0.234)	(0.234)
σ_{lpha}	4.968	4.963
	(0.240)	(0.240)
β_0	-5.035	-5.022
	(0.176)	(0.329)
σ_eta	6.347	6.521
	(0.148)	(0.154)
ρ		-0.013
		(0.017)
Likelihood	-2788.3	-2788.3
Number of jobs	2305	2305

Most jobs don't call anyone

	(1)	(2)
α_0	-4.922	-4.918
	(0.234)	(0.234)
σ_{lpha}	4.968	4.963
	(0.240)	(0.240)
β_0	-5.035	-5.022
	(0.176)	(0.329)
σ_eta	6.347	6.521
	(0.148)	(0.154)
ho		-0.013
		(0.017)
Likelihood	-2788.3	-2788.3
Number of jobs	2305	2305

 $Pr(p_{jw} < 0.01) \approx 0.53$

Severe discrimination among a minority of jobs

	(1)	(2)
$lpha_0$	-4.922	-4.918
	(0.234)	(0.234)
σ_{lpha}	4.968	4.963
	(0.240)	(0.240)
β_0	-5.035	-5.022
	(0.176)	(0.329)
σ_eta	6.347	6.521
	(0.148)	(0.154)
ρ		-0.013
		(0.017)
Likelihood	-2788.3	-2788.3
Number of jobs	2305	2305

 $Pr(\beta_j = 0) \approx 0.79, \quad E[\beta_j | \beta_j > 0] \approx 3.6$

The auditor's problem

- Consider an auditor that knows the parameters of the model
- The auditor's goal is to find discriminators by sending additional fictitious apps
- Can send up to 8 apps per job
- ► Simplify to two quality levels $q \in \{h, l\}$, corresponding to $x'\gamma$ one SD above and below its mean
- At every step, based on the observed callbacks, the auditor can decide to send another application, initiate an investigation, or give up

The auditor's problem

H_n is the auditing history after sending *n* apps. Includes counts of apps and callbacks by race and quality

For example:
$$H_4 = \begin{cases} \text{sent:} & (W_I, B_I, W_h, B_h) = (1, 0, 2, 1) \\ \text{CB:} & (W_I, B_I, W_h, B_h) = (0, 0, 2, 0) \end{cases}$$

The auditor's payoff

Once an investigation is initiated, the job's true type is revealed, yielding payoff:

$$\underbrace{\frac{1}{2}\sum_{q\in\{h,l\}}[p_{jw}(q)-p_{jb}(q)]}_{\equiv S_j}-\kappa,$$

where S_j is the severity of discrimination, κ is the cost of investigation, and $q \in \{h, l\}$ indexes quality

The auditor cares about the expected number of black callbacks lost relative to white applicants

The auditor's value function

$$V(H_n) = \begin{cases} \max \left\{ \underbrace{\max_{\substack{r,q \\ send new app}}}_{\text{send new app}}, \underbrace{v_l(H_n)}_{\text{investigate}}, 0 \right\} & \text{if } n < 8, \\ \underbrace{v_l(H_n)}_{\text{investigate}}, 0 \\ \underbrace{v_l(H_n)}_{\text{investigate}}, 0 \\ \end{cases} & \text{if } n = 8. \end{cases}$$

▶ Value of sending new app: $v_{rq}(H_n) = -c + \mathbb{E}[V(H_{n+1})|H_n]$

• Value of investigation: $v_l(H_n) = \mathbb{E}\left[S_j \middle| H_n\right] - \kappa$

 Expectations are evaluated via Bayes' rule starting with the population distribution as prior

Simulation Results

Expected value and optimal strategy after sending one application $(\kappa = .13, c = 10^{-4})$ (more)

Expected value and optimal strategy after sending three applications $(\kappa = .13, c = 10^{-4})$ (more)

 \sim 72% of jobs w/ history (0,0,3,0) and no CBs. If # of jobs = 100, then the auditor saves 0.72 \times 5 \times 100 = 360 apps on average

Expected value and optimal strategy after sending three applications $(\kappa = .13, c = 10^{-4})$ (more)

 $\sim72\%$ of jobs w/ history (0,0,3,0) and no CBs. If # of jobs = 100, then the auditor saves 0.72 \times 5 \times 100 = 360 apps on average

Expected value and optimal strategy after sending four applications $(\kappa = .13, c = 10^{-4})$ (more)

 $\sim 12\%$ of jobs w/ the two last histories. If # of jobs = 100, then the auditor saves $0.12\times 4\times 100=48$ apps on average

Apps sent vs. sensitivity Investigation probability fixed \in [.055, 0.06]

Apps sent vs. specificity sensitivity fixed \in [.14, .145]

Adaptive auditing catches the worst discriminators

 $\kappa = .13, c = 10^{-4}$

- Adaptive correspondence experiments have the potential to detect discrimination more efficiently than static experiments
 - Substantial reduction in the number of apps sent
 - Achieve the same levels of sensitivity and specificity
- These methods can contribute to other settings (e.g criminal justice, healthcare, policing and education) to detect discrimination efficiently
- Potential drawbacks:
 - Requires full knowledge of the distribution of callbacks (pilot study)
 - Assumes stable callback parameters
 - Dynamic programming is computationally expensive, especially as the dimension of the action space grows

 Potential extensions based on reinforcement learning e.g, Kasy and Sautmann (forthcoming)

- Adaptive correspondence experiments have the potential to detect discrimination more efficiently than static experiments
 - Substantial reduction in the number of apps sent
 - Achieve the same levels of sensitivity and specificity
- These methods can contribute to other settings (e.g criminal justice, healthcare, policing and education) to detect discrimination efficiently
- Potential drawbacks:
 - Requires full knowledge of the distribution of callbacks (pilot study)
 - Assumes stable callback parameters
 - Dynamic programming is computationally expensive, especially as the dimension of the action space grows

 Potential extensions based on reinforcement learning e.g, Kasy and Sautmann (forthcoming)

- Adaptive correspondence experiments have the potential to detect discrimination more efficiently than static experiments
 - Substantial reduction in the number of apps sent
 - Achieve the same levels of sensitivity and specificity
- These methods can contribute to other settings (e.g criminal justice, healthcare, policing and education) to detect discrimination efficiently
- Potential drawbacks:
 - Requires full knowledge of the distribution of callbacks (pilot study)
 - Assumes stable callback parameters
 - Dynamic programming is computationally expensive, especially as the dimension of the action space grows

 Potential extensions based on reinforcement learning e.g, Kasy and Sautmann (forthcoming)

- Adaptive correspondence experiments have the potential to detect discrimination more efficiently than static experiments
 - Substantial reduction in the number of apps sent
 - Achieve the same levels of sensitivity and specificity
- These methods can contribute to other settings (e.g criminal justice, healthcare, policing and education) to detect discrimination efficiently
- Potential drawbacks:
 - Requires full knowledge of the distribution of callbacks (pilot study)
 - Assumes stable callback parameters
 - Dynamic programming is computationally expensive, especially as the dimension of the action space grows
- Potential extensions based on reinforcement learning e.g, Kasy and Sautmann (forthcoming)

Thank You!

Expected value and optimal strategy after sending one app ($\kappa = .13, c = 10^{-4}$)

Expected value and optimal strategy after sending two apps ($\kappa = .13, c = 10^{-4}$)

Expected value and optimal strategy after sending three apps ($\kappa = .13, c = 10^{-4}$)

Expected value and optimal strategy after sending four apps ($\kappa = .13, c = 10^{-4}$)

Expected value and optimal strategy after sending five apps ($\kappa = .13, c = 10^{-4}$)

Expected value and optimal strategy after sending six apps ($\kappa = .13, c = 10^{-4}$)

Expected value and optimal strategy after sending seven apps ($\kappa = .13, c = 10^{-4}$)

Expected value after sending eight apps ($\kappa = .13, c = 10^{-4}$)

References I

- Alsan, M., Garrick, O., and Graziani, G. (2019). Does diversity matter for health? experimental evidence from oakland. *American Economic Review*, 109(12):4071–4111.
- Arnold, D., Dobbie, W. S., and Hull, P. (2020). Measuring racial discrimination in bail decisions. Technical report, National Bureau of Economic Research.
- Chakraborty, B. and Murphy, S. A. (2014). Dynamic treatment regimes. *Annual review of statistics and its application*, 1:447–464.
- Kasy, M. and Sautmann, A. (forthcoming). Adaptive treatment assignment in experiments for policy choice. *Econometrica*.
- Kline, P. M. and Walters, C. R. (forthcoming). Reasonable doubt: Experimental detection of job-level employment discrimination. *Econometrica*.
- Nunley, J. M., Pugh, A., Romero, N., and Seals, R. A. (2015). Racial discrimination in the labor market for recent college graduates: Evidence from a field experiment. *The BE Journal of Economic Analysis & Policy*, 15(3):1093–1125.
- Obermeyer, Z., Powers, B., Vogeli, C., and Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. *Science*, 366(6464):447–453.

- Rose, E. K. (forthcoming). Who gets a second chance? effectiveness and equity in supervision of criminal offenders. Technical report.
- Tabord-Meehan, M. (2020). Stratification trees for adaptive randomization in randomized controlled trials.