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Abstract

This paper studies the causal effects of childhood residential location on

the adult income of native-born Israeli children and the children of immigrants

from the former Soviet Union. Childhood location effects vary substantially

in Israel. While the place effects of high-income immigrants and natives are

strongly correlated, location effects for low-income immigrants are uncorrelated

with those for low-income natives. Guided by these findings, we explore how

this heterogeneity affects neighborhood recommendation policies that aim to

recommend the top locations in Israel when ethnicity-based targeting is not

allowed. Using empirical Bayes tools, we find that targeting policies based

on pooled population-wide averages yield inferior outcomes for immigrants.

Robust targeting strategies designed to perform well against the least favorable

sorting patterns reveal a set of 10 cities that are likely to benefit children of

both groups.
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A growing body of literature finds that childhood locations have a significant effect on

outcomes in adulthood (see Chyn and Katz, 2021, for a review). This evidence is the

basis for “moving to opportunity” policies that encourage low-income housing voucher

recipients to move to high-opportunity neighborhoods (Katz et al., 2001; Bergman

et al., 2019). These policies often provide a single unified recommendation about

where people should move based on a ranking of population-wide neighborhood-level

estimates. In the absence of prior knowledge about recipients’ behavioral responses,

the effectiveness of such unified policies relies on the assumption that location effects

are characterized by a unique underlying ordering that limits heterogeneity. As

evidence of heterogeneity grows (e.g., Chetty et al., 2018), there is increasing uncertainty

about whether families who follow the policy recommendations will ultimately benefit.

In this paper, we study this question in two steps. First, we provide evidence that

childhood location effects vary substantially for low-income children from different

backgrounds. Using a comprehensive administrative dataset from Israel, we establish

that, similar to Chetty and Hendren (2018a,b), one’s place of birth contributes

substantial variability to the adult earnings of both native-born and immigrant children.

However, the correlation between these effects for low-income immigrant and native-

born children is close to zero, suggesting that places that boost the income of one

group do not necessarily benefit the other. Based on these findings, we then study

the implications of this heterogeneity for the outcomes of the potential recipients of

the neighborhood recommendation policies proposed in Bergman et al. (2019).

We begin by revisiting the benchmark estimates of childhood location effects from

Chetty and Hendren (2018a,b) in Israel and separately estimate effects for immigrants

from the former Soviet Union arriving in Israel between 1989 and 2000 and native-born

children. Causal location effects are identified by leveraging variations in children’s

exposure time to different cities during childhood due to household moves at different

ages. This strategy combines variations in the timing of moves across locations within

Israel and the age at which children migrated from the former Soviet Union. This

strategy does not require random sorting, but rather assumes that among families

with the same sequence of location choices, the child’s age at arrival is unrelated to

unobserved components that affect potential outcomes. We support this assumption

with a series of robustness and specification tests.

Childhood location effects vary substantially for both native-born and immigrant
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children. For a child at the 25th percentile of the income distribution, moving at

birth to a one standard deviation better city boosts income at age 28 by 8-10% per

year, compared to the mean. Childhood location effects also vary substantially within

cities across immigration groups, with a pattern that differs by household income. The

correlation between the location effects of immigrants and natives among low-income

families at the 25th percentile of the income distribution is close to zero, while it is

strong and positive among high-income families. This result implies that there is no

single “promised land” for low-income families, i.e., places that generate high adult

income for one group do not generally boost income for the other. We show that this

zero correlation is not driven by differences in high school attendance patterns within

locations, within-city heterogeneity in neighborhood effects, or mismeasurement of

immigrant parental income. In contrast, our findings suggest that lack of social

integration and assimilation—measured by the location effects on intermarriage rates—

serves as a plausible explanation.

Large, diverse cities with a high immigrant share are more likely to benefit immigrants.

This finding aligns with the literature, which emphasizes the effect of geographic

concentration of immigrants and refugees on their outcomes (Edin et al., 2003; Beaman,

2012; Abramitzky et al., 2020). In contrast, municipality welfare expenditure per

capita negatively correlates with low-income native-born location effect, while it is

less predictive of low-income immigrant effects. Previous literature has emphasized

the relationship between poverty-related covariates and location effects, using these

characteristics to target housing policy (Katz et al., 2001). Our findings suggest that

such targeting strategies may not be useful for the Russian immigrants in Israel.

Motivated by these findings, we next study the consequences of heterogeneity for

the policy implemented in the Creating Moves to Opportunity (CMTO) experiment

(Bergman et al., 2019), which provided housing voucher recipients with recommendations

on where to move based on tract-level upward mobility estimates. We focus on a

unified policy that provides the same recommendations to all groups. Although the

literature suggests that the optimal policy should ideally be personalized and based

on group identity (Chan and Eyster, 2003; Cowgill and Tucker, 2019; Rambachan

et al., 2020), this restriction is motivated by legal and moral constraints common in

many countries, where it is unacceptable to base public programs on ethnic identity

or promote segregation.
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Using a decision-theoretic framework, we start by evaluating the policy considered in

Bergman et al. (2019), which ranks locations based on a pooled average estimate of

city effect. By construction, a policy based on average effects puts lower weights on the

gains for minority groups, producing inferior outcomes for such groups. These unequal

outcomes arise from two sources: First, the decision-maker’s inability to target the

treatment by ethnic group ex-ante, which prevents the policy from leveraging the

heterogeneity in location effects across groups, and second, the decision-maker’s

ambiguity regarding which households will respond to each particular policy recommendation

and how. With treatment effect heterogeneity, some compliance behavior with the

policy may dilute its effectiveness if the gains for households that respond are very

different from the overall average effect.

We suggest an alternative targeting policy, the minimax strategy (Wald, 1950), which

provides a list of recommended locations that are optimal under the least favorable

compliance scenario. We show that this policy can generate substantial advantages

for minority groups and achieve more equitable outcomes. With the minimax policy,

we can pinpoint at least 10 cities that benefit both groups, in which the worst-case

outcome for either group is 25% better than under the city-level average policy. Also,

we can ensure that, on average, no more than 25% of the recommended cities would

yield outcomes inferior to those resulting from the current status quo sorting patterns.

This paper contributes to several strands of the literature. First, we add a new

perspective to the vibrant discussion on the challenges from the neighborhood recommendation

policies proposed in the CMTO experiment. So far, the literature has focused primarily

on issues of identification (Heckman and Landersø, 2021; Eshaghnia, 2023) and inference

(Andrews et al., 2024; Mogstad et al., 2024), where the latter work emphasizes the

ramifications of ranking locations based on noisy estimates rather than their true

values. Although Chetty et al. (2018) and Chetty et al. (2020) acknowledge the

potentially multifaceted nature of locations, the literature has not considered the

complications it generates. As a result, analysis of both existing and proposed

mobility policies behaves as if there is a single ladder of location effects. In the

CMTO, for example, there is no guarantee that all recommended places are indeed

beneficial for all participants. While Mogstad et al. (2024) note this concern regarding

the risk of forming policy based on noisy estimates, similar logic also applies when

the signal varies. In this paper, we directly address this by modeling the uncertainty
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from both heterogeneity and unknown compliance, along with uncertainty driven by

measurement error.

Methodologically, our work relates to a growing literature on empirical Bayes ranking

and prediction methods that use shrinkage estimates to identify the value added of

schools, teachers, hospitals, and discriminatory firms (Chetty et al., 2014a; Abdulkadiroğlu

et al., 2020; Abaluck et al., 2021; Kline et al., 2022). Recent work in econometrics

has emphasized that such tasks are analogous to multiple testing problems, in which

decisions result from constraints on various sorts of error rates (Gu and Koenker,

2020; Kline et al., 2022; Mogstad et al., 2024). We add to this literature by modeling

the risk a decision-maker faces, distinguishing between the risk stemming from effect

heterogeneity, unknown behavioral responses, and statistical noise. Our model departs

from classic approaches to these problems by considering how optimal decisions

depend on partially identified parameters. In our setting, location effects are point-

identified (so the decision-maker faces only statistical uncertainty), while household

compliance patterns are not, creating ambiguity regarding the final allocation of true

payoffs.

This paper also extends a growing literature in economics on algorithmic bias and

fairness (Kleinberg et al., 2018; Cowgill and Tucker, 2019; Rambachan et al., 2020;

Liang et al., 2021) and the equity-efficiency tradeoffs of affirmative action programs

(Lundberg, 1991; Chan and Eyster, 2003; Ellison and Pathak, 2021). Papers in both

strands often conclude that the optimal policy should exploit all available information,

including group identity. In this paper, we explore the possibilities for a policy

conditional on a suboptimal restricted algorithm, which, to our knowledge, hasn’t

been studied. Our model demonstrates that we can improve the fairness of the

restricted policy by modeling the uncertainty generated by such restrictions using

a decision-theoretic framework. This approach can be extended to other settings

where policies face horizontal equity constraints.

1 Historical Context

In 1989, the Soviet Union relaxed its emigration restrictions, triggering one of the

most significant human movements of the late 20th century. Prior to this relaxation,

restrictive emigration laws and tight governmental controls made it nearly impossible

for Soviet residents to leave the country. As the USSR disintegrated, these legal
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barriers dissolved, and approximately 7 million Soviet residents left the Soviet Union

between 1989 and 2000 (Abramitzky et al., 2022). Among them, more than 1 million

Jewish immigrants arrived in Israel, increasing Israel’s population by 20%.

Figure 1: Annual number of Soviet immigrants and other countries to Israel
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Note: This figure displays the number of migrants to Israel from 1965 to 2019 from the Soviet Union and other
countries. Pink line (right axis) plots the fraction of Soviet immigrants.

Figure 1 presents the number of Soviet immigrants entering Israel by year. The bulk

of the migration wave, over 300 thousand immigrants, arrived in a relatively short

time span, between 1989 and 1991, and accounted for 7% of the Israeli population

prior to the immigration. This peak was followed by a steady influx of 60,000 per year

throughout the decade, totaling over 1 million—one-fifth of Israel’s 1989 population.

Soviet Jews received full Israeli citizenship upon arrival, granting them unrestricted

access to social services, education, healthcare, and social security (Buchinsky et al.,

2014). They faced no formal labor market restrictions and could settle anywhere

in Israel. The government provided support, including a modest one-year grant

(“absorption basket”), free Hebrew classes, and local integration centers.

This migration wave provides several favorable features for studying the effect of

childhood location of residence on children’s long-run economic outcomes. First, it

was large and unrestricted, with entire families immigrating together, enabling us

to estimate separately the effects for Soviet immigrants across multiple locations.

Second, as citizens, immigrants faced no regulatory barriers compared to natives,
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ensuring that institutional factors can not explain any immigrant-native gaps.

2 Empirical Model

2.1 Conceptual Framework

Consider a population of children indexed by i and a set of locations indexed by j ∈
{1, ..., J}. Let Yi(e) denote child i’s potential adult income as a function of the number

of years of exposure to each location, represented by the vector e = (e1, ..., eJ)
′. We

assume that childhood locations affect children’s long-run outcomes from birth to age

18, with ej representing the number of years of exposure to city j before age 18 such

that
∑

j ej = 18.1 Throughout the paper, we assume that potential outcomes follow

an additive structure:

Yi(e) =
J∑

j=1

θij · ej + ξi, (1)

where θij represents the contribution to adult income of an extra year in city j to

child i, and ξi is the error term, which includes all other age-, time-, or location-

dependent shocks beyond the variation by exposure time and childhood city that

affect children’s long-run outcomes. It could include, for example, time-invariant

and time-varying parental investments, moving costs, or age-specific shocks. This

model rules out location effect heterogeneity by child’s age, or complementarity or

substitutability between time spent in different places. The observed outcome for

child i is given by Yi = Yi(Ei) =
∑

j θijEij + ξi, where Ei = (Ei1, ..., EiJ)
′ represents

child i’s realized years of exposure to each city from birth to age 18.

2.2 Identification Strategy and Research Design

The ideal experiment would randomly send children to different places at different

ages. Absent such an experiment, we exploit a quasi-experimental design on the entire

population, following Chetty and Hendren (2018b). We identify location effects by

exploiting the variation in children’s exposure time to different cities during childhood

due to household moves at different ages. Our strategy combines variation in the

timing of moves across locations within Israel with variation in the age at which

children migrated to Israel from the former Soviet Union. To build intuition, consider

the following example. Among all native-born families that moved from city j to city

1Appendix Section D shows that moves after age 18 have little impact on children, consistent
with the fact that most Israelis enlist in the army right after high school.
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l and are of the same income level, some children arrived at younger ages, and some

arrived at older ages. Then, if among that narrow group, the moving decision is

unrelated to the child’s age at the move, we can infer the effect of growing up in city

j compared with city l: θjp − θlp by comparing the outcomes of children who spent

different time spans in each city.

Formally, consider all the families with the same family income rank p(i) who moved

once or twice between places when the child was younger than 18 years old, where

o(i) is child’s origin location, which is always the USSR for immigrants, d(i) is the

destination location, and d2(i) is the second destination if the family moved twice

and zero otherwise. We assume:

Assumption A1 (Selection on observables)

ξi ⊥⊥ Ei | (o(i), d(i), d2(i), p(i)),

Assumption A1 imposes important restrictions on the economic environment. It

requires that among children with the same set of childhood places and parental

income, the time spent at each location is not systematically correlated with unobserved

inputs that determine human capital. This includes no correlation with time-invariant

factors, such as ability, or time-varying factors, such as parents’ investments, that

affect the child’s income in adulthood and location choices. We test these assumptions

in Appendix Section D. Importantly, Assumption A1 does not preclude systemic

spatial sorting that correlates with the location effects themselves. For example, we

find in Section 5 that immigrants are more likely to reside in cities with high long-run

effects on children’s income in adulthood.

2.3 Empirical Implementation

Building on the identification strategy mentioned above, we estimate the childhood

location effects of each city in Israel for children who moved between places in Israel

when the children were young. Since our goal is to study heterogeneity by immigration

group, we estimate location effects separately for immigrants and natives, with g(i) ∈
{N , I} indicating whether child i is either native-born (N ) or immigrant (I). To

maximize sample size, we exploit variation in children’s exposure time to different

locations in Israel among families that experienced up to two moves when the child

was young. For immigrants, it includes two groups. The first includes families that

moved to Israel when the child was at age ai, settled in city j, and stayed there until
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the child grew up. For these families, the exposure variable is Eij = 18 − ai for the

first city of residence j and zero otherwise. The second group consists of immigrants

who moved twice, first immigrated to Israel when the child was at age ai and settled

in city d(i), then moved to city d2(i) when the child was at age a2i. For these families,

exposure is given by:

Eij = 1{d(i) = j}(a2i − ai) + 1{d2(i) = j}(18− a2i)

Similarly, for natives, our analysis includes families who moved once or twice between

cities in Israel before the child turned 18, with ai denoting the child’s age at the first

move from origin city o(i) to destination city d(i), and a2i the child’s age at the second

move to destination city d2(i), which equals zero if that child moved only once during

childhood. Therefore, their exposure variable is given by

Eij = 1{o(i) = j}ai + 1{d(i) = j}(ai2 − ai) + 1{d2(i) = j}(18− a2i).

Given these building blocks, we estimate the following OLS regression for children

whose families moved between cities in Israel or immigrated to Israel before the child

turned 18, separately for each immigration group:

Yi =
∑

g′∈{N ,I}

J∑
j=2

(
(αjg′ + ηjg′p(i))︸ ︷︷ ︸

θjg′p

Eij + x′
iγg′

)
1{g(i) = g′}+ ϵi, (2)

where our main parameters of interest are the city-level slope coefficients on years of

exposure, Eij. We estimate heterogeneous location effects, allowing them to vary

linearly by parental income rank, following earlier work indicating that a linear

relationship between parental income rank and location effects provides a good empirical

approximation (Chetty et al., 2014b).2 The intercept αjg measures the effect of

spending one more year in city j for a child of group g whose parental income is at

the lowest percentile in the national income distribution, and the slope ηjg measures

the location j one-year return to parental income for a child who belongs to group

g. Therefore, the total one-year location effect in city j for a child in group g with

parental income p is θjgp.

In Equation (2), xi includes fixed effects for sequences of location choices at the o(i)-

d(i)-d2(i) level for native-born children and at the d(i)-d2(i) by birth cohort level for

2Appendix Figure A.1 presents the relationship between children’s income rank at ages 28-30 and
parental income rank by immigration group and within a few selected cities, suggesting that this
relationship is approximately linear in Israel as well.
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immigrants.3 By including the sequence of locations fixed effects, location effects are

identified only from variation in the timing of moves rather than variation between

families that moved between different places. Children’s outcomes are measured at

a fixed age and, therefore, across different calendar years. Therefore, we add the

birth-cohort fixed effects to account for labor market fluctuations over time. Lastly,

xi includes birth year fixed effects interacted with parental income rank. We control

for the sequences of locations and parental income in an additively separable way

due to sample size constraints. Note that in this model, location effects are identified

only in relative terms. Hence, we set immigrants’ base-level location to be the former

Soviet Union, and natives’ base-level location to be Jerusalem.

Immigrants’ origin location is grouped at the USSR level. Therefore, for this population,

Assumption A1 requires the age of migration not to be correlated with the origin

neighborhood within the USSR. This could be violated if the timing of when families

left the Soviet Union varied across origin neighborhoods. In Appendix section D, we

provide a list of robustness tests for the model assumptions. In particular, we show

that our specification tests are robust to the inclusion of family fixed effects, which,

for immigrants, addresses the mentioned-above concern.

Estimation results in two vectors for every immigration group g ∈ {I,N}: one for

location effect intercepts, α̂g = (α̂1g, ..., α̂Jg)
′ and another for parental income rank

slopes, η̂g = (η̂1g, ..., η̂Jg)
′, and their corresponding variance-covariance matrix, which

is clustered by family id. The full estimated location effects vector is represented by

the stacked vector θ̂ = (α̂′
I , η̂

′
I , α̂

′
N , η̂′N )′, and its corresponding variance is represented

by the matrix Σ.

2.4 Variance Components

Having estimated θ̂, our central objective is to study the heterogeneity in location

effects both across cities and within cities by immigration group and parental income.

We measure the heterogeneity across and within cities by studying the finite-sample

3For immigrants, we interact the sequence of location choices’ fixed effects with the child’s year of
birth to account for the potential correlation between parents’ cohorts and children’s age at arrival.
We thereby compare immigrant families that moved at different years within cohorts.
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variance-covariance matrix of θj, denoted by Ω. For example, the variance of αjg is

σ2
αg =

J∑
j=1

nj

N
(αjg −

J∑
l=1

nl

N
αlg)

2, (3)

where nj is the number of families residing in city j, and N =
∑J

j=1 nj.

We observe only noisy estimates of the location effects θ̂j, rather than the location

effects themselves, θj. Therefore, the sample variance,
∑J

j=1
nj

N
(α̂jg −

∑J
l=1

nl

N
α̂lg)

2,

of αjg, or each of the other elements in θj, is over dispersed. The standard approach

to bias-correct the estimate of Equation (3) is to subtract from the sample variance

the mean squared of the standard errors (Chetty et al., 2014a; Chetty and Hendren,

2018b; Kline et al., 2022). As detailed in Appendix Section E, we use a variant of

that estimator, which accounts for the correlation of the θ̂j across different j.

3 Data

We use administrative data collected by the Israeli Central Bureau of Statistics (CBS).

The data covers the entire population of registered Israeli citizens born between 1950-

1995 and their parents and comprises of four primary sources: tax records from the

Tax Authority for the years 1995–2019 with employer-employee and self-employment

tax information; education records from the Ministry of Education, including school

identifiers and city; civil registry records providing demographics including gender,

birth year, immigration date, and origin, family links (parents, siblings, spouse,

children), and annual location of residence available for years 1999–2019 and 1995;

and the 1995 censuse, which includes city of residence. The next section describes

the sample construction and key variables. Further details are in Appendix B.

3.1 Sample Selection and Variable Definitions

The main sample consists of all children born in the years 1980-1995. Using the

location of residence of both the child and the parents, we define the primary parent

as the one who shares an address with the child for the majority of the years. If a

location value is missing (for example, we have no information on the city of residence

for years 1996-1998), we fill in the location of residence using the child’s school location

only if the school is in the same location as the child’s location of residence in year

t − 1.4 We enrich the location data using the city information available in the 1995

4So differences between school locations and location of residence are not counted as moves.
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census. Specifically, we use the answers to two questions: “When did you move to

your current city?” and “Where did you live 5 years ago?”. Using these variables, we

construct location information starting from 1995 and, for a subset, from 1990.5 For

the rest of this paper, our unit of location is a city or regional council,6 which is the

unit of local government.

For every parent in the sample, we construct the following variables: Parents’ income,

which is the total gross earnings at a household level, measured in 2016 Israeli shekels.

In years when the family has no recorded earnings, the family’s income is coded as

zero. To derive an approximation of parents’ resources during childhood, we calculate

the average earnings over the years 1995-2016. This time frame is selected to balance

between potential attenuation biases that may arise from measuring parental income

over too short a period and the risk of doing so too late in life when income tends to be

more volatile. We exclude families with less than 4 years of earnings, which accounts

for 1.5% of parents. Finally, we work with a parents’ percentile rank variable, defined

as the parental income rank in the national population that satisfies the restriction

of having at least 4 years of earnings in 1995-2016. To account for the unbalanced

structure of the child’s age at which parents have earnings, we calculate each income

rank within children’s cohorts and, therefore, compare parents’ earnings for children

at the same ages. Children’s main outcome is income rank at age 28, calculated within

the child’s cohort to account for differences in calendar year labor market conditions.

We study two primary populations. The first group consists of immigrants from the

former Soviet Union who arrived in Israel between 1989 and 2000. We identify the

children of immigrants based on their parents’ birth country and year of immigration.78

For each immigrant child, we calculate ai, the age of the child when the family

immigrated to Israel. We then code the first city or regional council of residence as

their destination location and record any other cities where the family lived during

the child’s childhood, had they moved.

The second group in our analysis is the native-born, which includes all non-Arab

5Response rate to these questions in 1995 is around 20%.
6A regional council is a group of nearby small towns or kibbutzim with a shared governing body.
7About 10% of immigrants in this period lacked country-of-origin data. We classified them as

Soviet immigrants, since 90% of arrivals were from the former USSR (see Figure 1).
8For immigrants who arrived in Israel before 1995, who are the majority of immigrants, the data

does not record the exact country of origin within the Soviet Union.
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individuals born in Israel (including families from older immigration waves).9 Similar

to the immigrants, for every family we record all the cities in which the family lived

during their children’s childhood. In some cases, we refer to families who reside in a

single location throughout the child’s childhood as permanent residents or stayers, and

the subset of families that are not permanent residents as movers. Lastly, we restrict

attention to cities with at least 100 individuals in every group. These requirements

narrow our analysis to 98 cities and regional councils out of 253.

3.2 Summary Statistics

Table 1 presents mean income (in Israeli shekels, $1 ∼ 3.4 ILS) and income rank of

parents and children of natives whose families moved between locations either once

or twice and Soviet immigrants whose families either moved to Israel and stayed in

the same city or immigrated to Israel and then moved between cities in Israel before

their child turned 18. For a more detailed comparison of families that moved once

and twice, see Appendix Section C.

Comparing columns 1-2 to 3-4, Table 1 shows that the 98 selected cities, which are

Israel’s largest cities and regional councils, represent most of the population, covering

88% of immigrants and 81% of native-born families that move between cities in Israel.

Notably, immigrant parental income is 55% that of natives, echoing the results in

Goldner et al. (2012) and Arellano-Bover and San (2023) of a large immigrant-

native wage gap. However, by age 28, second-generation immigrants closed most

of the gap, earning 95–96% of their native-born peers’ income. This reflects high

intergenerational mobility of immigrants, in line with findings in the US (Abramitzky

et al., 2021).

Appendix Figure A.2 plots the geographic distribution of immigrants across Israel,

both as their share of the total immigrant population (Panel (a)) and as their share

within each locality (Panel (b)). As expected, the biggest cities like Haifa, Tel Aviv,

Jerusalem, and Be’er Sheva absorbed the largest number of immigrants. However,

Panel (b) illustrates that immigrants settled not only in large urban centers but also

across the country, making up a significant portion of residents in many localities.
9Around 20% of Israelis are Arab citizens. However, geographic segregation—over 70% live in

entirely Arab localities—limits our ability to compare the two groups.
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Table 1: Descriptive statistics

All cities 98 cities

Immigrants Native-born Immigrants Native-born
(1) (2) (3) (4)

(A) Children
Income age 28 67,108 70,741 68,191 71,701
Rank age 28 52.5 53.6 53.2 54.2

(B) Parents
Parents’ income 131,670 235,981 129,997 233,095
Rank parents 45.7 63.3 44.8 63.1

Num. of children 156,269 116,572 138,664 95,500

Note: This table presents the mean children’s income and income rank at age 28 and the mean parental
income and parental income rank between the years 1995 and 2016 for immigrants and natives. All income
variables are measured in Israeli shekels (1 US $ ≈ 3.4 ILS ). For immigrants, the sample includes all families
who either arrived in Israel and stayed in the same city or arrived in Israel and then moved again between
cities before the child turned 18. For natives, the sample includes all families that moved either once or twice
between cities in Israel before the child turned 18. Columns 1-2 present the statistics for all families, and
columns 3-4 present the statistics for families in our selected sample of 98 cities and regional councils.

4 Estimates of Location Effects

4.1 Across-city Heterogeneity

Table 2 presents estimates of the distribution of location effects. As noted in Section

2.2, the cardinal value of location effects is not identified; therefore, for natives, they

measure the effect of spending one more year in city j compared to one more year

in Jerusalem and for immigrants, they measure effects compared to one more year in

the former Soviet Union. Panel (i) reports the mean and standard deviation of αjg

and ηjg. To summarize the full one-year effect of each city, panel (ii) reports the same

statistics for θjpg = αjg + ηjg × p, for p = 25 and p = 75, which we refer to as the

location effects of low- and high-income families, respectively.

Columns (1)–(3) report the statistics for all cities in Israel that meet the sample

restrictions, separately by immigration group. In total, 153 cities and regional councils

meet the criteria for natives, and 99 for immigrants. The average intercept αjg of

natives is 0.22, indicating that an additional year spent in the average city relative

to Jerusalem boosts age-28 income for native-born children by 0.22 ranks. The

corresponding estimate for immigrant children is 0.06 income ranks compared to

staying one more year in the former Soviet Union. Note that because the estimates

are in relative terms, ηjg can obtain negative values.10

10We control for the interaction between parents’ rank and children’s birth cohorts. To test
whether ηjg is always positive, we add the coefficients on parental income rank and birth cohorts
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Table 2: Variation in location effects on adult income rank at age 28

All cities Overlap cities

# of cities Mean Std. # of cities Mean Std. χ2 test
H0 : θj = θ1∀j

(1) (2) (3) (4) (5) (6) (7)

(i) By α and η
Natives

Cons. (α) 153 0.223 0.257 98 0.214 0.245 177.7
(0.113) (0.044) (0.115) (0.042) [0.0000]

Rank-parents (η) 153 -0.003 0.003 98 -0.003 0.003 179.3
(0.001) (0.001) (0.001) (0.000) [0.0000]

Immigrants
Cons. (α) 99 0.057 0.199 98 0.077 0.194 175.4

(0.041) (0.043) (0.043) (0.049) [0.0000]
Rank-parents (η) 99 0.003 0.003 98 0.003 0.003 269.7

(0.001) (0.000) (0.001) (0.000) [0.0000]
(ii) Total city effect
Natives

θ25 153 0.143 0.236 98 0.137 0.200 166.9
(0.103) (0.036) (0.105) (0.037) [0.0000]

θ75 153 -0.018 0.247 98 -0.016 0.172 161.6
(0.104) (0.036) (0.105) (0.037) [0.0001]

Immigrants
θ25 99 0.131 0.172 98 0.142 0.173 175.9

(0.030) (0.039) (0.031) (0.043) [0.0000]
θ75 99 0.280 0.211 98 0.273 0.218 247.9

(0.033) (0.030) (0.035) (0.032) [0.0000]

Note: This table reports estimates of the distribution of causal effects of Israeli cities on income rank at age 28,
separately for immigrant and native children. Columns (1)-(3) report estimates for all cities; columns (4)-(6) restrict
to cities with sufficient sample size for both groups. Columns (2) and (5) report the mean, and columns (3) and (6)
the standard deviations, computed as the square root of the bias-corrected variance component. Panel (i) reports
estimates for the distributions of the intercepts (α) and the slope coefficients on parental income rank (η). Panel
(ii) displays the corresponding estimates for the distribution of location effects for children in the 25th and 75th
percentiles of parental income distribution. Column (7) reports test statistics and p-values from chi-squared tests
of the null hypothesis that all locations are identical. Standard errors for all variance estimators are based on the
asymptotic variance, assuming that location effects are drawn from a normal distribution.

Panel (ii) summarizes the distribution of location effects for low- and high-income

families, separately by immigrant status. For both groups, mean location effects for

families in the 25th percentile are positive, and for immigrants, they are statistically

distinguishable from zero. For every year spent in the average city, low-income

immigrant (native) age 28 earnings rank increases by 0.131 (0.143) compared to the

effect of spending one more year in the USSR (Jerusalem). A regression of children’s

income on their rank among children who spent their entire childhood in the same

city shows that each percentile rank increase adds 1,530 shekels (≈ $450) for families

at the 25th percentile and 1,689 shekels (≈ $490) for those at the 75th percentile.

Using that relationship, the average city effect is equivalent to a 200 (219) Israeli

to η̂jg and apply the Bai et al. (2022) test. We reject the null that ηjg is always negative (p-values
< 0.01) and cannot reject that it is always positive (p-values > 0.99).
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shekels increase, which amounts to 60 (64) US dollars. Comparing the mean effects

of natives and immigrants reveals heterogeneity in location effects with respect to

parental income. While the effect of the average city on child’s income for immigrants

is always greater than zero, for low-income natives, the average city is better than

Jerusalem, but for high-income, it’s as good as Jerusalem.

The standard deviations of θjg25 and θjg75, presented in column (3), imply substantial

across-city variation in location effects in Israel. For families at the 25th (75th)

percentile, the standard deviation of θjgp is 0.236 (0.247) for natives and 0.172 (0.211)

for immigrants—comparable to the magnitude of the standard deviation of the US

county-level location effects estimates reported in Chetty and Hendren (2018b). Moving

at birth to a city with a one standard deviation higher location effect for low-income

natives (immigrants) increases children’s income rank at age 28 by 0.23 × 18 = 4.14

(0.17 × 18 = 3.06) ranks. This rank increase is equivalent to a 6,335 (4,681) ILS, or

$1,863 ($1,377) increase, which is around 8-10% of the mean income of children with

parents with below median income.11 For comparison, the return to a matriculation

certificate in Israel is 13% (Angrist and Lavy, 2009). Thus, moving at birth to

a one standard deviation better city yields 61-77% of the gains from earning this

credential.12

Columns (5)-(6) report the same statistics for the 98 cities for which we estimate

location effects for both immigrants and natives. For the remainder of the paper, we

use this sample to study the heterogeneity in location effects in Israel. The estimates

of the first two moments in columns (2) and (3) are not qualitatively different from

those in columns (5) and (6), suggesting that this is not a special subset of cities.

Finally, column (7) presents the χ2 test statistic and corresponding p-value for the

null hypothesis of no location effect heterogeneity across these cities. For all city-level

parameters, we reject this null at conventional significance levels.

4.2 Immigrant-Native Differences in Childhood Location Effects

Location effects vary substantially between native and immigrant children. This

is illustrated in Figure 2, which presents scatter plots and observation-weighted

regression lines of the estimates of the effects for natives against the corresponding

11Mean age-28 earnings for immigrants are 59,670 vs. 77,111 shekels (below vs. above median
income); for natives, the corresponding figures are 57,884 and 73,448.

12High-school matriculation certificate is a key determinant of future labor market outcomes, as
most post-secondary institutions require it for admission.
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effects for immigrants, separately by income group. Figure 2a displays the relationship

between immigrants’ and natives’ intercepts αjg—i.e., between the location effects for

families from the lowest income percentile; Figure 2b displays the relationship between

the slopes ηjg—i.e., between the city returns to parental income; and Figures 2c and

2d display that relationship for the total one-year location effects for families in the

25th and 75th percentiles of the national income distribution. Dashed lines are the

naive attenuated regression lines, while solid lines are the biased corrected regression

lines, with slopes estimated as the ratio between the covariance and the bias-corrected

variance of immigrants’ location effects. The corresponding estimates, together with

the mean and standard deviation of within-city immigrant-native location effects gaps

are shown in Table 3.13

The scatter plot and regression lines of the intercept (αjg) in Figure 2a reveal substantial

heterogeneity between immigrants and natives with the lowest parental income. Places

that benefit low-income immigrants are not necessarily places that benefit low-income

natives (corr = 0.04). In contrast, Figure 2b suggests much less heterogeneity in

location effects as parental income increases. Places with high returns to parental

income for immigrants tend to have high returns to parental income for natives.

Combining these findings, Figure 2c shows no relationship between location effects for

immigrant and native families at the 25th income percentile (corr = −0.02). However,

for families in the 75th percentile (Figure 2d), the location effects of immigrants and

natives are strongly correlated. A correlation coefficient of 0.45 suggests that locations

with one standard deviation higher effects for high-income immigrants have almost

half of a standard deviation higher effects for natives.

The standard errors of the correlation coefficients, calculated via the delta method,

suggest that these correlations are imprecisely estimated. At the same time, the

correlation is a highly nonlinear function for which the delta method approximation

may be inaccurate. Therefore, we report in the square brackets of column 3 of Table 3

the bootstrapped equal-tailed 90% confidence intervals assuming normally distributed

location effects. These intervals allow one-sided tests of whether each correlation

coefficient equals 1. For low-income families—either at the bottom of the distribution

or the 25th percentile—we can decisively reject correlations stronger than 0.5. In

contrast, for ηjg (the return to parental income), the correlation is 0.70, and we

13The full correlation matrix of (αjN , ηjN , αjI , ηjI)
′ is reported in Appendix Table A.1.
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Figure 2: The relationship between location effects for immigrants and natives
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Note: These figures display scatter plots and observation-weighted regression lines for immigrants’ and natives’
location effects. Panel (a) plots the estimated intercepts αjg , panel (b) the estimated slopes ηjg , panel (c) the
location effect for families at the 25th percentile of the income distribution, and panel (d) the location effect for

families in the 75th percentile of the income distribution. Dashed lines show the naive regression line of θ̂N on θ̂I
and the solid lines the bias-corrected regression line with slope Cov(θN , θI)/V ar(θI) using the estimates in Table 3.

cannot reject the null that it equals 1.

The last two columns of Table 3 report the mean and standard deviation of the

immigrant-native location effect gap. Column (5) reveals substantial heterogeneity in

the city-level location effects immigrant-native gap. The standard deviation of this

gap is 0.27, and 0.21 for families at the 25th and 75th income percentiles—50%-30%

higher than the standard deviation of the effects themselves. That is, moving at

birth to a city with one standard deviation higher gap implies moving to a city that

increases the adulthood income for one group by 7,436 ILS (≈ $2, 181) more than

the other, which is more than 14% of the mean income at age 28 for children from

a below-median-income family. Column (6) presents p-values for the null hypothesis

of no within-city differences in location effects. In line with our findings, we can
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Table 3: Differences in location effects between immigrants and natives

Difference

Covariance Correlation Implied OLS Mean Std. χ2 test
coefficient H0 : θjN − θjI = c ∀j

(1) (2) (3) (4) (5) (6)

α 0.002 0.041 0.052 -0.137 0.306 162.8
(0.013) (0.278) (0.350) (0.123) (0.064) [0.000]

[-0.441, 0.538] [-0.427, 0.590]

η 0.000 0.708 0.679 0.006 0.002 130.5
(0.000) (0.188) (0.202) (0.001) (0.001) [0.016]

[0.369, 1.000] [0.383, 1.101]

θ25 -0.001 -0.015 -0.017 0.005 0.266 162.0
(0.010) (0.278) (0.320) (0.109) (0.055) [0.0001]

[-0.514, 0.482] [-0.500, 0.444]

θ75 0.017 0.445 0.352 0.289 0.209 146.8
(0.009) (0.239) (0.213) (0.111) (0.053) [0.0010]

[0.010, 0.901] [0.033, 0.799]

Note: This table reports the relationship between immigrant and native location effects. Column (1) presents
their covariance, column (2) presents the bias-corrected correlation, which is the covariance divided by the
standard deviation of immigrants times the standard deviation of natives, and column (3) presents the
implied OLS coefficient, which is the covariance divided by the variance of immigrants. Column (4) presents
the mean within-city immigrants-natives gap, column (5) the standard deviation of the gap, and column
(6) presents the chi-squared test statistics and p-values for the null of no location effect heterogeneity. First
row reports estimates of the intercepts (α), the second reports the slope on parental income rank (η), and
the last two rows report location effects for children in the 25th and 75th percentiles of parental income
distribution. Standard errors of the variance and covariances are based on the asymptotic variance, assuming
normally distributed location effects. Standard errors of the correlations and OLS slopes are calculated via
delta method. Square brackets show the 90% parametric bootstrapped equal-tailed confidence intervals.

decisively reject the null of no within-city heterogeneity.

5 Predictors of Location Effects

Next, in Figure 3, we explore the characteristics of cities with high long-run effects

on children’s income by estimating the linear relationship between effects and city

characteristics. Throughout this section, we demean the effects and the characteristics

and divide them by the sample standard deviation. Most city-level characteristics

come from early 2000s data, where detailed definitions and sources are in Appendix

Section B. All regressions are weighted by city size.

Population and diversity: The first rows in Figure 3 suggest that larger cities

with a large immigrant share are associated with larger long-run effects on children of

immigrants. The findings on the economic impact of the geographic concentration of

ethnic groups on their outcomes are mixed. On the one hand, ghettos, mostly of the

Black population in the US, have been found to have negative, lasting effects (Massey

and Denton, 1993; Cutler and Glaeser, 1997; Chyn et al., 2022). In contrast, studies
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Figure 3: Relationship between location effects and city characteristics
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Note: This figure plots the relationship between city-level covariates and childhood location effects for children whose
parents’ income rank is in the 25th (left panel) and 75th percentile (right panel) of the income distribution. Each
relationship is estimated with a bivariate weighted least squares regression, reweighting observations by population
size in 2003, with location effects as outcomes. Covariates and location effects are standardized to have a mean of zero
and a standard deviation of one in the sample. Bars indicate 95% confidence intervals based on robust standard errors.
Appendix Section B describes the covariates’ definitions. The number of cities in each regression is in parentheses.
Cases with fewer than 98 localities are due to missing values or, in the case of segregation, because values cannot be
calculated for cities that do not have sub-areas.

on refugees suggest a more nuanced relationship. Consistent with our findings, a

handful of papers find that larger enclaves improve refugees’ labor market outcomes

through networks and social support (Edin et al., 2003; Beaman, 2012). Interestingly,

in these papers, the city immigrant shares were at most 10%. In contrast, in a

recent study of large Jewish enclaves in New York from the beginning of the 20th

century, Abramitzky et al. (2020) find that Jewish immigrants who left the enclave
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saw earnings gains for themselves and their children. In that setting, the Jewish

enclaves were huge, comprising over 60% of Jews. Inspired by this, we also estimate

the relationship between location effects and diversity, measured with the entropy

index which achieves its maximum value when city level immigrant share equals half

and its lowest value when it is zero or one.14 The fourth row in 3 suggests that

city-level diversity positively predicts low-income immigrants’ location effects.

A positive correlation between group shares and location effects could also reflect

sorting, whereby immigrants are more likely to locate in places that benefit their

children in terms of long-run economic outcomes. In the US, Chetty and Hendren

(2018a) suggest that low-income families are less likely to reside in areas with large

long-run effects on children. Our findings suggest that this is also the case in Israel

for low-income native families but not for immigrant families.15 Generally, our results

call for more causal research to disentangle peer effects from sorting, with particular

emphasis on the differences between immigrants and natives.

In contrast to evidence from the US, we find no relationship between low-income

location effects and segregation, measured using Theil (1972) index and city Gini

coefficient. Cities with higher income inequality are negatively associated with location

effects for high-income immigrants.

Labor markets: Figure 3 finds that employment rates and proximity to employment

centers and Tel Aviv, Israel’s economic hub, are not predictive of location effects.

One possible explanation for that is Israel’s small size, with essentially one major

employment center around the Tel-Aviv metropolitan area.16

Education: The next panel in Figure 3 studies the relationship between location

effects and education inputs and outputs. For low-income families, cities with high

rates of matriculation certificate attainment are associated with high location effects

for natives but not immigrants. In Section 7, we investigate the role of high schools

in further detail.
14Diversity is: − (πjI ln(πjI) + (1− πjI) ln(1− πjI)), where πjI is the city j immigrant share.
15Abramitzky et al. (2021) find somewhat different results for U.S. immigrants, showing they

tend to live in areas with high mobility rates—likely reflecting high native-born long-run outcomes.
However, their analysis is based on mean outcomes conditional on parental earnings, not causal
location effects, so further evidence is needed for comparison.

16This is illustrated in Appendix Figure A.3, which plots the number of workers in each of Israel’s
employment centers, as measured in the 2008 census.
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Poverty proxies: Figure 3 shows that municipality welfare expenditure per capita

negatively predicts native-born children’s location effects for all family incomes. The

point estimates for the share of families receiving income insurance and the crime

rate are also negative, although not precisely estimated. In our data, these are our

best proxies for city poverty rates.17 Interestingly, municipality welfare expenditure

per capital is not predictive of immigrant location effects, further emphasizing the

heterogeneity in our data. A negative relationship between location effects and

poverty rates has also been found in the US and was one of the first measures the

literature used for targeting housing policy (Katz et al., 2001). Their weak predictive

power for immigrants suggests that using such a targeting policy would not be useful

for immigrants in Israel.

City-level mean upward mobility rates: Previous research has emphasized that

the observable mean child rank conditional on parental income rank for native born

children is strongly predictive of location effects and suggests using these statistics for

policy targeting. We demonstrate here that due to the high heterogeneity in location

effects, it is not predictive of the benefits for all groups.1819 The last panel of Figure

3 shows that, in line with our evidence for heterogeneity, the native-born nonmovers’

permanent residents’ upward mobility rates, Ȳjp, are strongly predictive of natives’

effects, with a point estimate similar to Chetty and Hendren (2018b). However,

they have very little predictive power for low-income immigrants’ location effects.

These measures serve as the main instrument for guiding housing voucher policy in

Bergman et al. (2019). Their weak predictive power for low-income immigrant place

effects hints at the potential risk that may arise when using them to guide policy. We

further discuss this risk in Section 9.

6 Possible Mechanisms

There are several plausible explanations for the lack of correlation between the location

effects of immigrants and natives. For instance, immigrants and natives might attend

schools of differing quality or reside in different neighborhoods within cities. Other

17Unfortunately, there are no official records of poverty rates at the city level.
18We estimate upward mobility by regressing Yi = aj(i) + bj(i)p(i) + ui for each city j, among

native-born children whose parents never moved, where, p(i) is parental income rank, and Yi is the

child’s income rank at age 28. City j upward mobility rate is Ȳ jp = âj + b̂jp.
19Note that because all the immigrants are included in our analysis, including those born in Israel,

we can’t compute the equivalent index for immigrants.
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possible explanations include the mismeasurement of immigrants’ parental income or

the possibility that the lack of income rank correlation reflects low rates of social

interaction. In the following section, we directly test the first three explanations

and find that they do not explain the zero correlation between the location effects

of immigrants and natives. Although we are unable to fully disentangle the last

explanation, we provide evidence suggesting that cities promoting social integration—

measured by intermarriage rates—are more likely to exhibit high location effects for

high-income immigrants but not for low-income immigrants.

High school fixed effects: We approximate the role of high schools in explaining

variability in location effects by comparing variance components from Equation (2)

with those from a regression that also controls for high school fixed effects.20 To avoid

dropping observations, we group high schools with fewer than five observations into

one category.21 This model is identified from cities with multiple schools and from

schools that accept children from several local surrounding cities.

Appendix Table A.2 reports variance components for immigrants and natives with

and without controlling for high-school fixed effects. The standard deviation of low-

income native (immigrant) location effects declines from 0.20 (0.17) at baseline to 0.13

(0.10) when controlling for high-school fixed effects. Thus, high school effects explain

1 − 0.132

0.172
= 36% (1 − 0.102

0.172
= 41%) of the variation in location effects. However, the

variance of the immigrant-native within-city gap is three times larger, and although

the correlation coefficient becomes much noisier, the point estimate is more negative.

This suggests that the zero correlation between immigrants and natives is not caused

by schools. If anything, high schools in Israel act as equalizers. For high-income

families, the drop in the correlation is even more striking, as, without the high school

fixed effects, the correlation was strongly positive.

Neighborhood reweighting: The immigrant-natives heterogeneity might reflect

differences in within-city sorting rather than heterogeneity in the effects themselves.

To test that, one could estimate location effects at the neighborhood level and construct

the city-level effects as the equally weighted average of neighborhood effects.22 This

approach was taken in Card et al. (2022) to estimate industry-level wage premia as

20We estimate fixed-effects rather than high school exposure effects due to computing limitations.
21As a result, there are 10 high schools in this grouped category.
22We can’t estimate location effects at a neighborhood level due to our data agreement restrictions.
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the average firm effects. We follow a similar approach. We estimate Equation (2) at

a city level but reweight our regression inversely by the number of observations in

each origin-destination(s) neighborhood cell, thereby equalizing the influence of each

neighborhood on the aggregated city-level location effect.23

Appendix Table A.3 reports the results. Two key findings emerge. First, columns 1

and 3 show that the standard deviation of the reweighted estimates is 2 to 4 times

larger than the unweighted estimates. Second, we find that even after accounting

for the differences in the spatial distributions of immigrants and natives, there is

still substantial within-city heterogeneity where the correlation between the location

effects of immigrants and natives remains zero for low-income families and strongly

positive for high-income families. Similarly, in columns 2 and 4, we decisively reject

the null of no heterogeneity. These results suggest that although the differential

spatial distributions matter for the magnitude of city-level location effects, they do

not explain the disparities between immigrants and natives.

Parental income of immigrants not reflecting earnings potential: Immigrants

face earnings penalties due to frictions such as language barriers, cultural differences,

and lack of networks and information. Arellano-Bover and San (2023) estimate an

immigrant-native earnings gap on arrival of 50%, which was fully closed only after

27-29 years. Therefore, if immigrant parents’ income rank is lower than their skill

or ability rank would suggest, we might mistakenly classify high-earning-potential

parents as low earners. By doing so, when comparing the effects on immigrants and

natives, we do not compare families with the same skills. To accommodate this,

Appendix Table A.4 reports the correlation matrix of high- and low-income families,

but instead of calculating parents’ income rank in the national distribution, we do

it within immigration groups and therefore rank parental income among comparable

individuals. The standard deviation and correlations remain qualitatively similar to

those in Table 2, suggesting that the zero correlation between low-income immigrants

and natives is not due to misclassifying immigrants’ income potential.

The role of assimilation: A growing literature emphasizes the role of social

interactions on children’s long-term economic outcomes (e.g., Chetty et al., 2022).

Therefore, a possible explanation for the lack of correlation in location effects among

23Neighborhoods are based on statistical areas from the census for large cities (similar to census
tracks in the US) and on the sub-villages for the regional councils.
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low-income immigrant and native families—and the high correlation among high-

income families—might be a lack of social interaction and assimilation between the

two groups among low-income families and higher assimilation rates among high-

income families.

To test that, we approximate social assimilation with intermarriage rates of immigrants

and natives, and study the relationship between cities that promote assimilation

and their effect on income rank. As detailed in Appendix Section F, we proceed

in two steps. First, we estimate the causal effect of each location in Israel on the

intermarriage probability between immigrants and natives. In the second stage, we

regress the income-rank location effects on the posterior mean estimates of intermarriage

location effects. Interestingly, we find that while intermarriage effects are not predictive

of immigrants’ income-rank location effects for low-income families, they are predictive

of high-income location effects. This result might suggest that a lack of assimilation

and social interaction between low-income immigrants and natives could explain the

zero correlation in low-income location effects on income rank.

7 Robustness and Research Design Validation

Research design validation: To support our identification strategy, Appendix

Figures D.1 and D.2 provide a balancing exercise for the relationship between the age

at move and age at arrival in Israel and parents’ years of schooling, as measured in

the 1995 census. For native-born children, we also estimate the relationship between

parents’ earnings growth when the child was young and the child’s age at move.

We find no statistically significant relationship between age at move and family

characteristics conditional on location choices fixed effects and parental income rank.

Linear location effects: Our model assumes that location effects vary linearly

with years of exposure, a an assumption we test in Appendix Section D. D. Appendix

Figure D.5 shows, similar to findings in other countries, a linear relationship between

years of exposure and the mean outcomes of children who spent their entire childhood

in the same location. D.7 validates this using childhood test scores, showing no

effect for moves after the test age. Lastly, Appendix Figure D.8 shows that not only

is the relationship between mean outcomes and exposure time linear, but also the

relationship between location effects themselves and exposure time is well approximated

by a linear function.
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Change in natives’ location effects: Derenoncourt (2022) finds that childhood

location effects for incumbents could change due to a large migration wave. We test

this by estimating Equation (2) separately for older cohorts born between 1980-1987

and younger cohorts born between 1988-1991.24 Figure A.4 shows the correlation

between the location effects of older and younger cohorts. Although cutting the

sample in half increases sample uncertainty, point estimates suggest no change in

location effects across the two groups.

Robustness checks and sensitivity: Appendix Section C estimates location effects

using only one-time movers, yielding similar qualitative results despite the smaller

sample size. Appendix Table A.5 shows that our findings—and in particular, the

variance-covariance matrix of the location effects of immigrants and natives—are

robust to alternative measures of income such as earnings and log earnings (excluding

zeros). Lastly, our current approach reweights cities based on the total number of

families. Appendix Table A.6 shows that results are robust to reweighting cities by

the total number of movers (i.e., the total number of individuals who are included in

our main regression sample) and to reweighting by city-level group size.

8 The Distribution of Childhood Location Effects

Next, we extend our model and estimate the joint distribution of immigrant-native

location effects. We use this extended model for two tasks. First, to form the posterior

mean effect of each city, which is the best forecast of location effects that minimizes

the mean squared error (James and Stein, 1961). Second, in Section 9, we exploit

this distribution for a housing policy exercise, in which we generate predictions for

other features of the joint distribution. In the following section, we briefly describe

the model. For a more detailed discussion, see Appendix Section G.

8.1 Model and Estimation

Following the standard approach in the literature, we assume that θ̂jgp are normally

distributed, centered around the true effect, θjgp. Since we find in Appendix Section G

that each marginal distribution of θjgp is well approximated by a normal distribution,

we further assume that also θjgp follows a normal distribution.

24Ideally, we would compare to cohorts unexposed to the Soviet migration wave, but no high-
frequency micro-level locations data exist for those years.
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To improve the predictive power of our model, we allow mean location effects to

vary linearly with a few city-level covariates zj discussed in Section 5, and that were

found to be the most predictive of location effect (see discussion in Appendix Section

G). zj includes the city-level diversity index, population size, and locality welfare

expenditure per capita. We estimate the model in two steps. First, we run a weighted

least squares regression of θ̂gp on z separately for every group g ∈ {N , I}. Then,

similar to Section 2.4, we estimate the city-size-weighted unbiased variance component

by method of moments, accounting for the sampling error.

Using the estimated hyperparameters reported in column (2) in Appendix Tables G.1

and G.2 as prior, we estimate the posterior mean effect of each location, shrinking

each θ̂ toward the linear prediction of θ̂ on z. Even if the true location effects are

not normally distributed, the posterior mean yields a prediction of θ that reduces the

mean squared error at the cost of increased bias (James and Stein, 1961).

The location effects of low-income families: Figure 4 plots the demeaned

posterior mean of location effects across cities and regional councils in Israel for

immigrants and natives in the 25th percentile of the national income distribution.25

The posterior means are highly variable both across cities and within cities across

groups. The posterior mean effect of spending one more year in the worst city ranged

between 0.3 lower and 0.4 higher yearly income rank at age 28, a change of up to

620 ILS per year (≈ $180). Comparing immigrants and natives, it is apparent that

there are significant differences between each group’s city effect. Among low-income

families, many of the northern Israeli communities are found to be places that benefit

natives but not immigrants. In contrast, southern cities on the coastline of Israel,

which have a high immigrant share, are among the best cities for immigrants, but are

only as good as the average for natives.

9 Policy in the Face of Heterogeneity

Evidence on the importance of childhood residential location for children’s long-term

outcomes is the main motivation behind “moving to opportunity” policies, in which

policymakers aim to motivate low-income housing voucher recipients to move to high-

opportunity neighborhoods. Katz et al. (2001) selected areas for public housing

based on their poverty rates, while more recent studies suggest targeting locations

25Appendix Table H.1 lists the posterior means for all 98 cities and regional councils.

26



Figure 4: Posterior mean location effects, low-income families

(a) Natives, θ25 (b) Immigrants, θ25

Note: These maps plot the posterior mean effects of year-long exposure to cities and regional councils in Israel
on children’s income rank at age 28 for children whose parents are in the 25th percentile of the national income
distribution. Figure (a) displays the effects for natives and Figure (b) the effects for immigrants. The maps are
constructed by grouping cities into 12 equally sized groups in which the darker blue the area, the larger its effect
compared to the mean, and the darker red the area, the smaller the effect compared to the mean.

based on children’s outcomes in adulthood conditional on parental income (Bergman

et al., 2019). We find that location effects in Israel exhibit substantial heterogeneity,

whereby the places that benefit low-income immigrants and natives are not necessarily

the same places. Suppose we wanted to generate a list of recommended cities that

provide the best opportunities for low-income children to inform housing policy in

Israel, similar to Bergman et al. (2019). How does the treatment effect heterogeneity

we document affect the outcomes and design of the optimal policy? In this paper, we

restrict attention to a model that maps closely to the selection of top places used in

the CMTO experiment. We focus on a partial equilibrium analysis and start with a

simplified model that abstracts from capacity and budget constraints. In Appendix
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Section I, we provide an extension with more realistic and elaborated assumptions.

9.1 Setup

Consider a decision-maker whose task is to provide us with a single list of the top

K cities in terms of their long-run effects on children’s income in adulthood. Since

public housing programs target low-income families, we restrict attention to a policy

that takes into account only the long-run effects on low-income children. As such,

hereafter, to ease notation, we drop the parental income rank p subscript.

Our model incorporates several assumptions. First, due to ethical or legal considerations,

the decision-maker is restricted to a decision rule that provides the same list to all

groups, regardless of immigration status.26 This decision rule is described by the

vector δ = (δ1, ..., δJ)
′, where δj ∈ {0, 1} indicates whether city j is selected by the

policymaker. For example, Bergman et al. (2019) prespecified a list of neighborhoods

that promote upward mobility. Then, in an experiment on housing voucher recipients,

they recommended the families in the treatment group to move to one of the neighborhoods

on their list. Therefore, restricting the policy to be unified in this context implies

precluding the possibility of providing different recommendations to different groups.

Another example could be a decision-maker who wants to choose K locations for new

public housing units for low-income families. Here, a unified decision rule implies that

housing agencies cannot restrict access to an existing housing unit based on group

characteristics.

Second, we assume that our decision-maker faces uncertainty regarding the true value

of θ. However, she knows the distribution of θ and observes the estimates of θ and

their variance, which we collect in the array Y = (θ̂,Σ). As a result, the decision-

maker forms decisions by minimizing the expected, rather than the true, loss, where

the expectation is taken over the posterior distribution of θ given Y .

Lastly, we assume that the decision-maker acknowledges the inefficiencies that arise

from banning the use of group characteristics. Therefore, she evaluates the benefit

of a decision rule relative to that expected from the first-best policy that allows for

discrimination. Formally, let the oracle first-best policy for the best K cities for each

26For example, in the US, court rulings have disallowed race-based housing policies (Tegeler, 2009).
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group g ∈ {N , I} be:

δ∗jgK = 1{θjg ∈ {θ(1)jg , θ
(2)
jg , ..., θ

(K)
jg }}

where θ
(l)
jg is the l’th order statistic of the location effects of group g—i.e., the l’th

largest value of θjg. We define θ∗(δ∗jgK , K) ≡ 1
K

∑J
j=1E[θjgδ

∗
jgK ] as the group g’s

expected long-run effect of selected cities under the first-best. Equipped with these

definitions, we assume that the decision-maker values the return to each city in

comparison with the expected first-best value:

ϑjgK = θ∗(δ∗jgK , K)− θjg. (4)

Equation 4 describes the regret of not using the first-best policy (Savage, 1954). With

this normalization, the decision maker is concerned not only about the outcome she

receives, but also about the outcome she would have received had she not been bound

by ethical or legal constraints.27

9.2 Benchmark: Selection Based on the Average Effect

We start with a model that rationalizes Bergman et al. (2019)’s selection criteria,

in which the goal of the decision-maker is to choose the cities with the highest city-

level average location effects. Formally, in Bergman et al. (2019), the decision-maker

selects the list of cities, δ, that minimiazes the following loss function:

L(ϑ, δ, π0) =
∑
j

δj(π
0
jIϑjIK + (1− π0

jI)ϑjNK), (5)

subject to
∑J

j=1 δj = K, where π0
jI = nIj

nIj+nN j
∈ [0, 1] is the share of immigrants in

city j in the data, i.e., in the status quo if no policy is enacted, and ngj is the number

of group g ∈ {N , I} families in city j. This loss function implies that the decision-

maker ranks places based on the pooled city-level mean effect, which describes how

people sort within cities in the status quo:

ϑ̄jK = π0
jIϑjIK + (1− π0

jI)ϑjNK , (6)

and select the cities with the lowest ϑ̄jK . Since immigrants are a minority group, the

average city index assigns a small weight to their regret, disproportionately favoring

the native-born group. With zero correlation between immigrants’ and natives’

27A discussion we had with Israeli government officials who expressed interest in the CMTO
experiment motivated this regret normalization. After finding the excess heterogeneity in location
effects in Israel, they expressed their disappointment and raised the concern that the first-best
personalized policy would not be politically feasible.
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location effects, by construction, places with low ϑ̄jK are more likely to be beneficial

for natives but not necessarily beneficial for immigrants.

The decision-maker does not observe the location effects θjg directly. Instead, she

treats the joint distribution from Section 8 as a prior, and minimizes the expected

loss—i.e., the Bayes risk—by choosing δ to minimize:

R(δ; π0) = E[L(ϑ, δ, π0)|Y ]

=
∑
j

δj(π
0
jIE[ϑjIK |Y ] + (1− π0

jI)E[ϑjNK |Y ]),

subject to
∑J

j=1 δj = K, where the expectation is taken over the posterior distribution

of location effects given the evidence Y , and E[ϑjgK |Y ] is the posterior mean regret of

group g ∈ {N , I} in city j. Therefore, the Bayesian decision-maker ranks locations

by their posterior mean regret:

E[ϑ̄jK |Y ] = π0
jIE[ϑjIK |Y ] + (1− π0

jI)E[ϑjNK |Y ],

and the optimal decision rule takes the following form:

δjK = 1{E[ϑ̄jK |Y ] ≤ κK},

with κK being the value of the Kth lowest posterior mean E[ϑ̄jK |Y ]. In what follows,

we refer to this policy as targeting based on the average status quo sorting patterns.

Figure 5 displays a scatter plot of the posterior mean regret of immigrants and natives,

where the red squares mark the cities selected under the average status-quo policy

when K = 10. We can see that while the regret for natives is bounded below 0.2, the

regret for immigrants could be almost twice as large.

9.3 Accounting for Unknown Behavioral Responses

We now turn to explore alternative policies that strive to avoid harming any of the

treated groups. In our setting, harm arises for two main reasons: the decision-maker’s

inability to offer personalized recommendations ex-ante, and the lack of information

regarding which families will follow through and move to the recommended locations

ex-post. Take-up uncertainty is a built-in restriction in the literature where all the

proposed policies are primarily based on estimates of location effects, but not on

estimates that incorporate information on recipients’ compliance. This shortcoming

was raised in Mogstad et al. (2024), who pointed out that there is no guarantee that

families who received a recommendation in the CMTO experiment will sort into the
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Figure 5: Selected Cities Under the Average and Minimax Policies, K = 10
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Note: This figure plots the scatter plots of immigrants’ and natives’ posterior mean regret for families at the 25th
percentile of the income distribution. Black dots are the posterior mean regret for immigrants and natives. Red
squares present the cities selected by the status-quo mean policy; Green rectangles present the cities selected by the
minimax (N/I/city) policy; Orange Xs present the cities selected by the minimax (N/I) policy.

places whose location effects are indeed high. In this section, we propose a remedy

by explicitly modeling the compliance uncertainty the decision-maker faces.

9.3.1 Who Shows Up?

We start with a simplified toy model where the decision-maker faces uncertainty only

regarding the identity of the families that move to each recommended location. Such

a scenario could arise, for example, if the decision-maker’s task is to select a list

of K cities for new public housing units, and build one unit in each chosen city.

The loss function in this model mirrors Equation (5), but now the weights on each

city represent the probability that an immigrant family will eventually move into

the housing unit built in city j. This probability is therefore a function of families’

preferences, constraints, and responses to the policy, all of which are unknown.

Facing this uncertainty, the decision-maker can take several paths. Analogous to

how the decision-maker handles uncertainty with respect to each location effect θ,

she can form a prior distribution on πjI based on her beliefs. One justification for

the decision rule in Equation (6) could be that the decision-maker’s prior reflects a

belief that public housing recipients sort according to the status quo—that is, similar

to existing sorting patterns within each city—regardless of the policy they face. We

opt for a different approach, acknowledging our ignorance regarding family sorting
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behaviors. We propose to follow a minimax policy, which is robust to the least

favorable compliance scenario.

Formally, given a vector of location effects θ and a list of recommended cities δ, the

worst-case regret that could have arisen under the least favorable compliance is:

L(N ,I)(ϑ, δ) = max
π

L(ϑ, δ, π) =
∑
j

δj max
πj

{πjIϑjIK + (1− πjI)ϑjNK} . (7)

A minimax decision-maker who knows the true value of θ would directly seek to

choose δ to minimize (7). However, with uncertainty also regarding the true value of

θ, she chooses instead δ to minimize the following expected maximum loss:

R(N ,I)(δ) = E

[
L(N ,I)(θ, δ)

∣∣∣∣Y]
=

∑
j

δjE

[
max
πj

{πjIϑjIK + (1− πjI)ϑjNK}
∣∣∣∣Y]

, (8)

subject to
∑J

j=1 δj = K, where the expectation is taken over the posterior distribution

of θ given Y . This decision rule involves optimizing both parameters that are set

identified (π(δ)) and parameters that are point identified (θ). This problem is equivalent

to a zero-sum game with nature, where nature knows the true location effects and,

for every list of recommended cities δ, it chooses the worst behavioral response π.

By minimizing the maximum regret, the decision-maker tries to achieve the optimal

first-best solution without violating the horizontal equity constraint.

Minimizing the objective function in Equation (8) yields the following decision rule,

in which the optimal policy is to rank locations based on their expected within-city

posterior maximum regret:

δ
(N ,I)
jK = 1{E[max{ϑjIK , ϑjNK}|Y ] ≤ κK}, (9)

where κK is the maximum value such that there are exactlyK cities withE[max{ϑjIK , ϑjNK}|Y ] ≤
κK . Throughout this paper, we refer to this policy as minimax over (N , I).

Figure 5 displays the posterior mean regret for immigrants and natives of each city,

where the green rectangles mark the cities selected under the minimax (N , I) policy.
Unlike the cities selected under the mean status-quo policy, the minimax decision rule

identifies places that provide relative benefits (bounded regret) for both groups.

Connection to welfare economics: The spectrum of objectives between that

implied by the observation-weighted loss function in Equation (5) and the minimax

loss function in (7) maps to the familiar social welfare criteria. At one extreme,

Equation (5) can be thought of as a utilitarian social welfare function that linearly
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aggregates benefits across different groups, with each group’s population share serving

as the decision-maker’s social welfare weights. At the other extreme is the minimax

decision loss function in Equation (7), which is equivalent to a Rawlsian decision-

maker with extreme equity preferences. The range of social preferences between the

linear and the Rawlsian utility functions depends on the marginal rate of substitution

between the two groups and reflects the decision-maker’s attitudes towards equity.

9.3.2 Who Shows Up and Where Do They Go?

Next, we consider a decision-maker who faces uncertainty not only regarding the

identity of each housing recipient but also regarding families’ location choices. This

model is directly inspired by Bergman et al. (2019)’s experiment. In this framework,

the decision-maker recommends housing voucher recipients to relocate to one of the

top K cities that provide high opportunities for low-income children. Then, given the

recommended list δ, each family g ∈ {N , I} sorts into cities according to the function

πjg(δ) ∈ [0, 1], such that
∑J

j=1 (πjN (δ) + πjI(δ)) = 1. Hence, the decision-maker seeks

to minimize the following loss function:

L(ϑ, δ, π(δ)) =
J∑

j=1

[
δj(πjI(δ)ϑjIK + πjN (δ)ϑjNK) (10)

+ (1− δj)(πjI(δ)ϑjIK + πjN (δ)ϑjNK)

]
subject to

∑K
j=1 δj = K. To avoid a degenerate minimax solution, we restrict

attention to behavioral responses that satisfy full compliance, in which, given a

selected list of recommended cities, recipients follow the recommendation and move

to one of the cities on the list. We justify this approach following the findings

of the CMTO experiment. First, the CMTO experiment developed a technology

that induces substantial compliance, which increased the share of families moving to

recommended places by more than 38%. Second, Bergman et al. (2019) also find that

the sorting pattern of the CMTO experiment control group aligns with the sorting

pattern in the status quo, absent the experiment. Therefore, the regret associated

with the second part of Equation 10 is likely constant, consisting of the share of

noncompliers and the regret from the status quo sorting.28 Therefore, we restrict

28Formally, if we denote δ = 0 be the no-policy where no recommendation is made and represent
the regret from the no-policy as L(ϑ, 0) =

∑J
j=1(πjI0ϑjIK + πjN0ϑjNK), where πjg0 is the share of

group g families in city j in the status quo out of the entire population. Then, the loss function is:
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attention to a decision-maker who minimizes the following loss function:

L(ϑ, δ, π(δ)) =
J∑

j=1

δj(πjI(δ)ϑjIK + πjN (δ)ϑjNK), (11)

subject to
∑J

j=1 δj = K. Since the decision-maker has no prior knowledge on π(δ) =

(π1N (δ), π1I(δ), ..., πJN (δ), πJI(δ))
′, she seeks a robust policy, which is optimal even

under the worst compliance pattenrs. For a given list of cities δ and location effects

θ, the loss associated with such sorting behaviour is:

L(N ,I,city)(ϑ, δ) = max
π(δ)

L(ϑ, δ, π(δ)) = max
π(δ)

{
J∑

j=1

δj(πjI(δ)ϑjIK + πjN (δ)ϑjNK)

}
,

where the policy compliers belong to the immigration group with the highest regret

and sort to the worst recommended city. Hence, the robust Bayesian policy aims to

select the δ which minimizes this expected loss:

R(N ,I,city)(δ) = E[L(N ,I,city)(ϑ, δ)|Y ],

subject to
∑

j δj = K. This objective function yields a decision rule in which the

optimal policy is to rank lists of locations of size K based on their expected maximum

regret across all cities on that list and across all groups:

δ
(N ,I,city)
K = argmin

δ
E[max({ϑjNK , ϑjIK}j∈S(δ))|Y ], (12)

where S(δ) = {j : δj = 1} is the set of recommended cities. Under this decision rule,

the decision-maker evaluates the posterior expectation of the maximum regret across

all selected locations and across immigrants and natives and chooses the list with the

lowest regret. Therefore, hereafter we refer to this policy as minimax (N , I,city).

Figure 5 displays the posterior mean regret for immigrants and natives in each city,

where the orange Xs are the cities selected under the minimax (N , I, city) policy. In
our setting, the cities selected under the minimax (N , I, city) decision rule happen

to be the same cities as those selected under the minimax (N , I) policy. Similarly, it

identifies the places that provide relative benefits (bounded regret) for both groups.

L(ϑ, δ, π(δ)) = ω

J∑
j=1

δj(πjI(δ)ϑjIK + πjN (δ)ϑjNK) + (1− ω)L(ϑ, 0),

where ω is the share of compliers. In this model, non-compliers will not affect the optimal policy.
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9.4 Evaluation of Each Policy

We evaluate the expected regret of each of the policies mentioned above via simulation.

Specifically, we simulate the location effects for low-income families implied by the

mixing distribution in column (2) of Appendix Table G.1. For every number of

selected cities K and group, we calculate the optimal first-best policy δ∗jgK and

compute θ∗(δ∗g , K) as the across-simulation average effect of selected cities under the

first-best policy. Regret values ϑjgK are then computed as the difference between each

simulated draw of θjg and θ(δ∗g , K). For every simulated draw and a grid of values

of K, we estimate the mean status-quo average policy and the minimax policies. As

detailed in Appendix I, the empirical Bayes posterior expectations of the minimax

policies are computed via simulation. Lastly, we report the expected true regret for

each group, along with the maximum regret associated with each policy.

9.4.1 Counterfactuals

Figures 6a and 6b illustrate the costs and benefits of the policies described above for

K = 10. Values are the shekel value of the regret associated with an additional year of

exposure. That is, they reflect the expected money lost from not residing in the group-

specific first-best city for one year. The first two groups of bars report the expected

average regret of immigrants and natives from the selected cities: E[ 1
K

∑
j ϑjgKδj]; the

third,max(N /I), reports the expected within-city maximum regret: E[ 1
K

∑J
j=1 max{ϑjNK , ϑjIK}δj]

across immigrants and natives in selected cities; and the forth, max(N /I/city),
reports the expected maximum regret across all selected cities, immigrants, and

natives: E[max{ϑjNK , ϑjIK}j∈S(δ)]. In subfigure 6a, we evaluate these policies for a

decision-maker who knows θ. Therefore, any regret reported there is only a consequence

of the heterogeneity and the horizontal equity restriction. In subfigure 6b, we consider

a decision-maker who doesn’t know θ but relies on our estimates Y , as described in

the previous section. Therefore, the regret associated with each policy in this plot is

a result of both heterogeneity and noise uncertainty.

As a result of the lack of correlation between the location effects of immigrants

and natives, policy recommendations based on the effects on one group generate

substantial regret for the other. This can be seen in the blue and green bars, which

plot the outcomes from the personalized first-best policy in which the decision-maker

recommends the top 10 locations based on the regret of only one of the groups,
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Figure 6: Targeting trade-offs from choosing the top 10 cities
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i) Personalized policy
Native-born 0.548 0.534

Immigrants 0.398 0.414

ii) City-level policy
Av. status-quo 0.643 0.584

Minimax (N/I) 0.999 0.745

Minimax 0.999 0.733
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(c) Share better than the status-quo

Note: These plots present the expected regret from policies selecting the top 10 places in Israel based on location
effects for children with parents at the 25th income percentile. Regret, reported in shekels (1 US $ ≈ 3.4 ILS), is the
difference between the one-year location effects and the expected benefit from the top 10 cities for each group. The
policies in subfigure (a) are based on the true location effects, and in subfigure (b), they are based on the empirical
Bayes posterior means. The first two groups of bars report each group’s expected regret. Max(N , I) bars report
the expected within-city immigrant-natives maximum regret of selected cities, and Max(N , I, city) bars report the
expected maximum regret across all selected cities and immigrants and natives. Blue and green bars report policies
that rank locations by group-specific regret; red bars report policies that rank places based on city-average regret
(Eq. 6); purple and pink bars report minimax policies based on within-city and cross-city max regret (Eqs. 9 and 12,
respectively). Subfigure (c) shows the share of selected cities with regret below the status quo.

either immigrants or natives. By construction, under full information on location

effects (subfigure 6a), the first-best policy of each group generates no regret. Since

location effects are not correlated, the average one-year regret for immigrants sent to

the top locations for natives provides 537.5 ILS (≈ $158) lower income in adulthood

compared with the first-best. Similarly, sending native-born children to the top 10

immigrant places provides them with 455.4 fewer shekels (≈ $133) in adulthood per

year, compared to the first-best.

When θ is unknown (subfigure 6b), the policies are based on empirical Bayes shrinkage

of functions of location effects. With the personalized policies, places are ranked

according to the posterior mean effects of each group. The blue and green bars
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show that for immigrants (natives), the average recommended location under that

personalized policy generates 108 (181) fewer shekels in adulthood than the group’s

first-best. This loss is driven entirely by noise uncertainty and was discussed by former

literature (Mogstad et al., 2024; Andrews et al., 2024). Nevertheless, the expected

mean regret from providing the personalized policy of one group to the other under

uncertainty is similar to that when the decision-maker faces full certainty.

Policies based on the status quo average place more weight on the gains of natives

and, therefore, provide higher regret for immigrants. This is illustrated in the red

bars, which show that the status quo average policy nearly attains the outcomes of

the personalized policy for natives. Under full information about location effects,

the status quo average policy generates only 15.2 fewer shekels (< $5) for natives

compared with the first-best. Likewise, the empirical Bayes policy attains 197 fewer

shekels per year (≈$58), which is only 8% more than the personalized policy that ranks

places by natives’ posterior mean regret. Accordingly, the regret for immigrants from

the status quo average policy is almost as bad as the personalized recommendation

based only on the outcomes of natives. In the table right next to these figures, we

show the share of selected places that are better than the status quo mean. Column

1 shows that even when θ is known, under the status-quo average policy, 4 out of

the 10 selected cities will end up with regret higher than that expected under the

status-quo sorting patterns for either group.

While the average status quo policy generates regret for the minority groups, our

analysis shows that it is possible to avoid extreme adverse outcomes for both groups

with the minimax policies. The purple and pink bars report the average regret

under the minimax (N , I) and (N , I, city) policies, in which the decision-maker is

ambiguous with respect to future behavioral responses. When θ is unknown (subfigure

6b), the minimax policies reduce immigrants’ regret by a third compared to the

average policy, at the cost of a 38% increase in regret for natives. The expected

maximum regret across the immigration groups (the value of max(N , I)) drops by

15%, and the value of max(N , I, city)—i.e., the worst-case scenario mentioned in

Mogstad et al. (2024)—drops by 25%. Lastly, column 2 in the adjacent table shows

that the minimax policies cannot provide full insurance against cities that are worse

than the status quo, as in column 1. Still, they ensure that at most 2.5 of the 10

cities will generate regret higher than the average status quo value.
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The gains from employing more equitable policies (i.e., the minimax policies) are less

pronounced when the location effects of both groups are positively correlated. To

illustrate this phenomenon, Appendix Figure A.5a reports the expected regret from

these policies for high-income families who exhibit a strong correlation between the

location effects of immigrants and natives. For immigrants, the status quo average

posterior mean policy provides only 54% higher regret than when places are ranked

only based on the posterior mean of immigrants. This is much lower than the costs

illustrated in Figure 6, for which the average status quo policy generates regret that

is almost 3 times larger than the posterior mean of immigrants. As a result, minimax

policies provide little improvement for immigrants compared to the average status

quo policy. Worst case regret is only %15 lower, and the share of places that are

worse than the status quo is only 6% higher than that under the average policy.

Fair policy: The trade-off faced by the decision-maker is visualized in Figure 7,

which plots the expected total regret of immigrants and natives from the status-quo

average and minimax (N /I) policies described in Equations (6) and (9). Each dot

corresponds to the sum of selected cities’ regret for K between 1 and 30, and the

corresponding K is reported right next to the dot.

Figure 7: Total regret under minimax (N /I) and average status-quo targeting policies
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Note: This figure plots the total regret of immigrants and natives from the average status-quo and minimax (N/I)
policies. Blue dots plot outcomes generated by the minimax (N/I) policy described in Equation (9). Red dots plot
outcomes generated by the status-quo average policy described in Equation (6). Curves are generated by varying K,
the number of selected cities, between 1 and 30, and the K is printed next to each dot. Total regret is the sum of
regret over selected cities, separately by immigration group, and the dashed line is the 45-degree line.

For every K, a policy based on the status quo average is clearly advantageous for
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natives but provides limited benefits for immigrants, which is reflected by the red

curve lying below the 45-degree line. In contrast, for every K, the minimax strategy

total regret lies very close to the 45-degree line, which implies a more equitable

outcome. As K increases, total regret increases, both because we select more places

and because it is harder to attain equal outcomes since fewer places benefit both

groups equally. While for a given K, the regret of native-born children under the

minimax policy is higher than under the status-quo average, for every value of regret

for natives, there exists a K for which the minimax strategy attains the same level of

regret for natives, together with less regret for immigrants.

9.5 Selected Israeli Cities

Table 4 reports the top 15 Israeli cities sorted according to the posterior maximum

regret across immigrants and natives when K = 10, where regret is in shekel values

(1 US $ ≈ 3.4 ILS). The regret from selecting the top 10 leading cities is bounded for

both groups. This is evident in columns 1-3, which report the posterior mean regret

of immigrants, natives, and the city average, weighted by the observed status-quo

shares. Compared with the first-best policy, an additional year spent in any of these

cities generates, on average, 146-330 lower ILS earnings (495-1,120 US $) for natives
and lower 169-427 ILS earnings (575-1,452 US $) for immigrants. Column (4) reports

the posterior expectation of the within-city maximum regret (N , I). Even in the least

favorable scenario, children in the top 10 cities have incomes only 237-470 ILS lower

(equivalent to approximately 800-1,600 US $) than in their average optimal 10 cities.

The top 10 cities based on the minimax (N , I) targeting policy are likely to provide

returns that are higher than those expected under the status quo sorting pattern. In

column 5, we report the posterior probability that the regret of either immigrants

or natives falls above each group’s average under the status quo sorting, Pr(ϑjN ≥
L0 or ϑjI ≥ L0|Y), where L0 =

∑J
j=1(πjI0ϑjI + πjN0ϑjN ), and πjg0 is the share

of group g in city j in the status quo out of the entire population. This posterior

probability is the analog of the false discovery rate in multiple hypothesis testing

settings in which, for each city, we test the null that the regret of both immigrants

and natives is greater than L0. By averaging the first 10 values in column 5, we

conclude that when selecting the top 10 cities following the minimax (N , I) targeting
policy, we should expect that at most 2 of these 10 cities would generate outcomes

worse than the status quo for either of the two groups.
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Table 4: Top Israeli cities selected based on minimax criterion, K = 10

Posterior mean

Native-
born

Imm. Average E[max{ϑN , ϑI}|Y] Worse than
status-quo

Selected by minimax
(I/N/city)

Loc. name (1) (2) (3) (4) (5) (6)

Bat Yam 145.8 168.3 161.2 237.1 0.011 Yes (680.2)
Haifa 222.9 293.6 274.4 344.2 0.090 Yes (680.2)
Rishon Leziyyon 268.9 270.7 270.4 350.6 0.073 Yes (680.2)
Holon 289.1 300.6 298.6 379.1 0.119 Yes (680.2)
Karmi’el 216.4 305.4 270.4 385.7 0.212 Yes (680.2)
Qiryat Gat 301.2 261.7 274.7 397.8 0.204 Yes (680.2)
Betar Illit 329.8 201.5 212.7 398.5 0.234 Yes (680.2)
Ashdod 67.2 418.4 289.8 421.9 0.274 Yes (680.2)
Dimona 233.8 412.2 371.0 468.2 0.368 Yes (680.2)
Arad 197.3 427.0 330.8 469.8 0.395 Yes (680.2)
Ma’alot-tarshiha 357.3 371.5 364.7 495.9 0.421
Qarne Shomeron 294.0 404.9 387.7 497.5 0.432
Efrata 433.1 240.9 267.6 499.4 0.441
Yoqne’am Illit 291.6 430.1 393.5 506.6 0.443
Qiryat Motzkin 465.7 257.3 303.1 507.2 0.451

Note: This table reports a list of 15 Israeli cities sorted by within-city posterior immigrant-native maximum regret. Regret
is the lost earnings at age 28 from spending one year in city j, compared with the average city selected under the first-best
personalized policy. Columns 1-3 report posterior mean regret for natives, immigrants, and the average. Column 4 reports
the posterior maximum regret across immigrants and natives. Column 5 gives the posterior probability that either group’s
location effect is below the average under status quo sorting. Column 6 reports the cities selected based on the minimax
(N/I/city) policy, with the list’s posterior maximum regret in parentheses.

The last column indicates the cities selected under the minimax (N /I/city) policy,
which in our data when K = 10, coincides with the list of cities selected by the

minimax (N , I) policy. In parentheses, we report the posterior expectation of the

maximum regret across all selected cities and across both immigrants and natives.

Consistent with Jensen’s inequality, the expected maximum value across all cities

exceeds the average values of the top 10 cities found in column 4. It provides us with

a guarantee that, on average, regret would not be higher than 680 ILS.

9.6 Model Extension and Robustness

Model Extension: The stylized models depicted in Section 9.3 provide a clear,

easy-to-interpret closed-form decision rule for a minimax decision-maker who seeks

robustness against the least favorable sorting scenario. Nevertheless, these policies

are derived under simplified assumptions that may not hold in reality. First, the

minimax decision-maker behaves as if all families might sort into a single worst place—

a phenomenon that is rejected by the data. To illustrate this, Appendix Figure

A.6 plots the distribution of location choices of families if they follow the minimax

(N /I/city) strategy and face the minimax (N /I/city) decision-maker. This figure

shows that the minimax behavior assumes that families sort into a small set of places,
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which might not be reasonable. Second, the models in Section 9.3 do not take into

account capacity constraints or other limitations that may arise in real-world settings.

To account for these concerns, Appendix Section J describes an extended model that

restricts sorting probabilities to better align with the spatial distribution in the data

while maintaining compliance uncertainty. We show that when location choices are

restricted to align closely with the status quo spatial distribution, decisions are similar

to those of the average status quo policy. In contrast, with more ambiguity regarding

location choices, optimal policy aligns with the minimax decision rule and offers more

equal outcomes to both groups. On that scale of ambiguity, the choice between these

possible models depends on the decisionmaker’s information and uncertainty.

The range of restrictions on location choices discussed in this section reflects the

importance of careful contemplation of the information set and social objectives

decision-makers might have. While previous literature has primarily focused on how

noise affects decisions (Mogstad et al., 2024; Andrews et al., 2024), this extension

emphasizes that statistical uncertainty alone could result in various types of policies,

depending on the uncertainty decision-makers face on other dimensions.

Normalization: To assess the sensitivity of the results to the regret normalization,

Appendix Table A.7 replicates Table 4 while normalizing the value of each place in

comparison with that expected under the status quo sorting patterns. Selecting the

top 10 Israeli cities using the mean status quo normalization yields the same list as

in Table 4, although the within-list ranking is different.

Noisy hyperparameters: Appendix section G.3 studies the sensitivity of our

analysis to noisy hyperparameters. Using a full hierarchical Bayesian approach, we

estimate the model with Hamiltonian Monte Carlo (HMC), setting a flat prior on the

mean and variance hyperparameters. The resulting hyperparameter estimates and list

of selected cities align closely with the ones estimated in our 2-step EB procedure.

10 Conclusion

This paper studies the heterogeneity in the causal effects of Israeli cities on children’s

income in adulthood. Our exploration into the nuanced differences between childhood

location effects of natives vs. immigrants in Israel has shown that cities benefiting

one group do not necessarily benefit the other.

41



Previous literature has used similar city-wide average location effects to rank places

and inform recommendations for families relocating through housing voucher programs

(Bergman et al., 2019). While the literature on school value-added and hiring policies

has emphasized the importance of taking into account match effects and treatment

effect heterogeneity (e.g., Biasi et al., 2021; Bates et al., 2024), neighborhood recommendation

policies often treat places as an ordered treatment, usually proportional to mean

poverty rate or mean earnings (Katz et al., 2001; Bergman et al., 2019). Our findings

suggest that such policies may disproportionately harm minorities.

We discuss the trade-offs policymakers face when implementing a unified policy that

cannot be conditioned on individual characteristics, in settings with both noise and

compliance uncertainty. While the literature has primarily focused on the risks

of forming policy based on noisy estimates, we highlight that uncertainty driven

by heterogeneity should also be taken into account when treatment effects vary

substantially. Nevertheless, using a decision-theoretic framework, we show that by

acknowledging the ambiguity with respect to individuals’ sorting behavior, it is possible

to find at least 10 cities in Israel that are beneficial to both groups. Our model

demonstrates that fairness can be improved even in restricted unified policies. Such

a model could be useful in other settings where treatments are directed not at

individuals but at predefined groups.
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Online Appendix
(Not For Publication)

A Additional Figures and Tables

Figure A.1: Parental income rank and child mean income rank at ages 28–30

All Cities
(a) Natives (b) Immigrants

Selected Cities
(c) Natives (d) Immigrants

Note: These figures display the relationship between parental income rank and mean child income rank for
immigrants from the Former Soviet Union and native-born Israeli children in ages 28–30. Left panels show all
Israeli cities; right panels focus on children who lived in Tel Aviv, Be’er Sheva, and Jerusalem from birth to age
18.

Figure A.2: Immigrants’ spatial distribution

(a) Across city share (b) Within city share

Note: This map presents the geographic distribution of immigrants across
Israel. Panel (a) maps the share of immigrants in each location out of the
immigrant population. Panel (b) maps the share of immigrants out of the
whole population within each city. Location names are attached to the cities
with the ten largest values. The values are grouped into 15 equally sized
bins and colored accordingly. Source: The annual Local Authorities in Israel
report of the Central Bureau of Statistics, 2003.

Figure A.3:
Employment centers

Note: This figure displays
the number of workers (in
thousands) in the major
employment centers reported in
the 2008 census.
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Figure A.4: The relationship between location effects of natives born in 1980-1987
and 1988-1991
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(b) Total effect, θ75

Note: These figures display the scatter plots and observation-weighted regression lines of location effects
for native Israeli children born in years 1980-1987 and 1988-1991. Panel (a) presents the location effects
for families in the 25th percentile of the income distribution, and panel (d) the location effects for families
in the 75th percentile of the income distribution. The dashed line is the naive regression line and the
solid line is the bias-corrected regression. Square brackets display parametric bootstrapped equal-tailed
confidence intervals

Table A.1: Variance component of the intercept and slope (αjN , ηjN , αjI , ηjI)

Natives Immigrants

Cons. Rank-parents Cons. Rank-parents
(1) (2) (3) (4)

Natives
Cons. 0.245

(0.042)

Rank-parents -0.724 0.003
(0.124) (0.000)

[-0.880, -0.372]
Immigrants

Cons. 0.041 -0.166 0.194
(0.278) (0.271) (0.049)

[-0.441, 0.538] [-0.668, 0.297]
Rank-parents -0.215 0.708 -0.457 0.003

(0.223) (0.188) (0.177) (0.000)
[-0.676, 0.228] [0.369, 1.030] [-0.690, 0.052]

Note: This table reports the standard deviation in diagonal and correlation in off-diagonal
of the vector of intercepts and slopes of the location effects of immigrants and native-
born Israeli children. All variance components are weighted by the total number of city
residents. Standard errors of the variance and covariances are based on the asymptotic
variance, assuming location effects are drawn from a normal distribution. Standard errors
of the correlations and standard deviations are calculated using the delta method. Square
brackets display parametric bootstrapped equal-tailed confidence intervals.
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Figure A.5: Targeting trade-offs from choosing the top 10 cities, p = 75
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(b) Unknown θ

% better than the status-quo

Known θ Unknown
(oracle) θ

(1) (2)

i) Personalized policy
Native-born 0.742 0.623

Immigrants 0.585 0.703

ii) City-level policy
Av. status quo 0.751 0.711

Minimax (N/I) 1.000 0.773

Minimax 1.000 0.762
(N/I/city)

(c) Share better than the status-quo

Note: These plots present the expected regret from different policies that aim to select the top 10 places in Israel
based on the location effects for children whose parents are in the 75th percentile of the income distribution. Subfigure
(a) displays results from policies based on the true location effects, and subfigure (b) displays the results from policies
based on the empirical Bayes posterior mean values. The first two groups of bars report the expected regret of each
policy and group. The Max(N , I) bars report the expected within-city immigrant-natives maximum regret of selected
cities, and the Max(N , I, city) bars report the expected maximum regret across all selected cities and immigrants
and natives. The blue and green bars report the results from a policy that ranks locations based on the regret of
each group. The red bars report the results from a policy that ranks locations based on the status-quo average regret
described in Equation (6). The purple bars report the results from the minimax (N/I) policy described in Equation
(9). The pink bars report the results from the minimax (N/I/city) policy described in Equation (12). Subplot (c)
presents the share of selected cities with regret lower than that under the status quo sorting patterns of each group.

Figure A.6: The distribution of the least favorable sorting patterns

Note: This figure plots the probability that a housing voucher recipient family chooses to move to each Israeli city
if families follow the minimax strategy and are facing the optimal policy of the minimax decision-maker. Red bars
display the sorting probabilities of native families, and blue bars display the sorting probabilities of immigrant families.
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Table A.2: Variance components and correlations, robustness to school fixed effects

Baseline w/ school FE % explained variance
(1) (2) (3)

(i) Low-income families (θ25)
Std. Natives 0.200 0.128 0.360

(0.037) (0.059)

Std. Immigrants 0.173 0.101 0.416
(0.043) (0.052)

Std. Difference 0.266 0.545
(0.055) (0.154)

Immigrants-native corr -0.017 -0.154
(0.320) (0.673)

[-0.500, 0.444] [-1.101, 0.711]
(ii) High-income families (θ75)

Std. Natives 0.172 0.097 0.436
(0.037) (0.036)

Std. Immigrants 0.218 0.179 0.188
(0.032) (0.057)

Std. Difference 0.209 0.473
(0.053) (0.166)

Immigrants-native corr 0.445 -0.076
(0.239) (0.476)

[0.010, 0.901] [-0.835, 0.673]

Note: This table reports the bias-corrected variance components of year-long exposure location
effects of native-born and immigrants from high- and low-income families. Column (1) reports our
baseline estimates of location effects. Column (2) reports the variance components from a model
with high school fixed effects. Column (3) reports the share of variance explained by high school
fixed effects. Standard errors are calculated via the delta method.

Table A.3: Variance component, equal neighborhood weights

Low-income families, θ25 High-income families, θ75

Std. χ2 test Std. χ2 test
H0 : θjI − θjN = c ∀j H0 : θjI − θjN = c ∀j

(1) (2) (3) (4)

Natives 0.9563 189.4 0.8924 202.1
(0.2174) [0.0000] (0.1959) [0.0000]

Immigrants 0.5040 464.0 0.5360 286.7
(0.0749) [0.0000] (0.0559) [0.0000]

Immigrants-native corr 0.0556 0.3098
(0.2185) (0.1618)

Note: This table reports the bias-corrected variance components of the location effects of native-born
and immigrants. This table reports the robustness exercises reweighting the regression by the origin-
destination number of observations. Columns (1) and (2) present the results for families from the 25th
percentile of the income distribution, and columns (3) and (4) present the results for families from the
75th percentile of the income distribution. The first two rows in columns (1) and (3) report the standard
deviation of location effects, while the third row reports the correlation between natives’ and immigrants’
location effects. Standard errors are calculated via delta method.
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Table A.4: Heterogeneity in location effects, within group parents income rank

Low-income families, θ25 High-income families, θ75

Natives Immigrants Natives Immigrants
(1) (2) (3) (4)

Natives 0.158 0.193
(0.052) (0.041)

Immigrants -0.116 0.186 0.488 0.248
(0.338) (0.026) (0.215) (0.025)

[-0.689, 0.439] [0.064, 0.882]

Note: This table reports the standard deviation in diagonal and correlation in off-diagonal of immigrants’ and natives’
location effects on children’s income rank at age 28. Columns 1-2 display the correlation matrix for low-income families
from the 25th percentile of the within-group income distribution, and columns 3-4 display the correlation matrix for
high-income families at the 75th percentile of the within-group income distribution. Standard errors of the variance
and covariances are based on the asymptotic variance, assuming location effects are drawn from a normal distribution.
Standard errors of the correlations and standard deviations are calculated using the delta method. Square brackets display
parametric bootstrapped equal-tailed confidence intervals.

Table A.5: Heterogeneity in location effects, earnings and log earnings

Low-income families, θ25 High-income families, θ75

Natives Immigrants Natives Immigrants
(1) (2) (3) (4)

A) Earnings
Natives 169.53 262.42

(300.71) 380.80)

Immigrants -0.75 367.35 0.35 557.07
(1.48) (61.53) (1.18) (59.98)

[-3.12, 0.96] [-0.81, 1.16]

B) Log earnings
Natives 0.0181 0.0179

(0.0081) (0.0068)

Immigrants 0.0284 0.0268 0.5638 0.0350
(0.4008) (0.0042) (0.3220) (0.0043)

[-0.614, 0.324] [0.122, 1.138]

Note: This table reports the standard deviation in diagonal and correlation in off-diagonal of immigrants’
and natives’ location effects on children’s earnings at age 28 measured in Shekels (Panel A, 1 US $
≈ 3.4 ILS). Columns 1-2 display the correlation matrix for low-income families from the 25th percentile
of the within-group income distribution, and columns 3-4 display the correlation matrix for high-income
families at the 75th percentile of the within-group income distribution. Standard errors of the variance
and covariances are based on the asymptotic variance, assuming location effects are drawn from a normal
distribution. Standard errors of the correlations and standard deviations are calculated using the delta
method. Square brackets display parametric bootstrapped equal-tailed confidence intervals.
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Table A.6: Heterogeneity in location effects, robustness to city level weights

θ25 θ75

Natives Immigrants Natives Immigrants
(1) (2)

(i) Total # of movers weights
Natives 0.163 0.171

(0.048) (0.042)

Immigrants -0.067 0.264 0.429 0.339
(0.253) (0.043) (0.201) (0.042)

[-0.532, 0.383] [0.070, 0.825]
(ii) Group # of movers weights

Natives 0.173 0.198
(0.050) (0.041)

Immigrants -0.081 0.205 0.468 0.267
(0.306) (0.026) (0.217) (0.026)

[-0.622, 0.457] [0.025, 0.879]
(iii) Group # of residents weights

Natives 0.183 0.163
(0.045) (0.042)

Immigrants -0.180 0.190 0.470 0.248
(0.299) (0.023) (0.268) (0.023)

[-0.732, 0.360] [-0.005, 0.970]

Note: This table reports the standard deviations and correlation of the location effects of immigrants
and natives for different reweighting schemes. Columns 1-2 report the correlation matrix for low-
income families, and columns 3-4 report the correlation matrix for high-income families. In panel
(i), cities are reweighted by the total number of movers; in panel (ii), cities are reweighted by the
number of each group’s movers; and in panel (iii), cities are reweighted by each group’s total number
of residents. Standard errors of the variance and covariances are based on the asymptotic variance,
assuming location effects are drawn from a normal distribution. Standard errors of the correlations and
standard deviations are calculated via delta method. Square brackets display parametric bootstrapped
equal-tailed confidence intervals.

Table A.7: Top selected Israeli cities, K = 10, status-quo sorting normalization

Posterior mean

Native-
born

Imm. Average E[min{ϑN , ϑI}|Y] Worse than
status-quo

Selected by minimax
(I/N/city)

Loc. name (1) (2) (3) (4) (5) (6)

Bat Yam 184.4 347.0 295.4 161.0 0.087 Yes ( -234.6)
Ashdod 263.0 97.0 157.7 72.7 0.295 Yes ( -234.6)
Haifa 107.2 221.7 190.6 70.7 0.245 Yes ( -234.6)
Rishon Leziyyon 61.2 244.6 210.3 41.0 0.359 Yes ( -234.6)
Karmi’el 113.7 209.9 172.1 36.0 0.396 Yes ( -234.6)
Holon 41.0 214.7 184.0 16.6 0.437 Yes ( -234.6)
Qiryat Gat 28.9 253.6 180.1 -7.3 0.512 Yes ( -234.6)
Arad 132.8 88.3 107.0 -16.5 0.518 Yes ( -234.6)
Betar Illit 0.4 313.8 286.5 -24.2 0.539 Yes ( -234.6)
Dimona 96.4 103.1 101.6 -26.0 0.544 Yes ( -234.6)
Ashqelon 291.7 -41.0 75.8 -52.9 0.578
Qarne Shomeron 36.1 110.4 98.9 -71.1 0.633
Yoqne’am Illit 38.5 85.2 72.9 -74.1 0.645
Ma’alot-tarshiha -27.2 143.8 62.0 -90.5 0.691
Gush Etzion -16.8 121.5 101.6 -95.2 0.683

Note: This table reports a list of 15 Israeli cities sorted by within-city posterior immigrant-native minimum effect. Columns 1-3 report
the posterior mean of native-born children, immigrants, and the average. Column 4 reports the posterior minimum between immigrants
and natives. Column 5 reports the posterior probability that the location effects of immigrants or the location effects of natives are lower
than their average effect under the status quo sorting patterns. Column 6 reports the cities selected based on the minimum (N/I/city)
policy, where the posterior maximum effect of the selected list is presented in parentheses.
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B Data and Definitions

The data covers the entire Israeli population born between 1950 and 1995, including

birth/death years, and matched parents. We merge this with the 1995-2019 tax

records and the annual population registry files (1995, 1999–2019), which report city

and statistical area of residence for children and parents, as well as immigration year

and origin country. Earnings are inflation-adjusted to 2016 prices, summed across

all sources (employed and self-employed). Income ranks are estimated on the entire

population. A child is an immigrant if at least one parent was born in the USSR

and immigrated between 1989-2000. We drop anomalous records: birth after death

(≈ 450), parent birth year before 1950 (10), unmatched parent IDs in tax data (113),

and negative earnings (≈ 950).

Using registry data as the main source for locality, we construct geographic mobility

variables. Since we observe each parent’s and the child’s location annually, we define

a child’s location based on the parent with the most overlapping years in the same

locality. A move is recorded when the locality changes from one year to the next.

For the missing registry years (1996–1998), we use school locality data to identify

moves when it matches either the origin or destination. We further enrich location

data using the 1995 census, which includes responses to “When did you move to your

current city?” and “Where did you live 5 years ago?”—allowing us to extend mobility

histories back to 1990 for some individuals. Sample is restricted to localities with at

least 100 children of each group, immigrants and natives. This yields 98 of the 256

localities and regional councils.

City Level Covariates:

• Gini index (1998): City-level inequality, based on gross earnings from National Insurance

Institute data, reported in the Local Authorities in Israel report.

• Diversity: is the within-city group entropy: Ed =
∑

g πg∈{N ,I} log
1
πg
, where πg is the

share of group g individuals in the city, and the summation is performed over all the groups

in the city. Ed ranges from 0 (homogeneous) to logG (maximum diversity with G groups).

• Theil (1972) index for segregation: constructed using the 2000 earnings records. For

every group g (immigrants or natives), we compute the city-level entropy E and sub-area

entropy Es. Segregation is: H =
∑

s(
pops
pop

E−Es
E ), where pops is the population size of

subarea s and pop that city population size.

• Share of criminal offenders (2002): Share charged with serious crimes.
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• Municipality welfare expenditure: Municipality-level spending on welfare per capita

(1998), from administrative data via the Local Authorities report.

• High-school Bagrut eligibility: Municipality-level share of 12th graders eligible for a

Bagrut certificate in 1999–2000, based on Ministry of Education records.

• Distance to employment center: The distance from each city to the nearest employment

hub, based on the Central Bureau of Statistics 2008 census workplace data.

• Peripherality index: Developed by the Central Bureau of Statistics, measuring cities

geographic proximity to major population centers. It is based on factors like distance from

markets, employment hubs, and the Tel Aviv district.

C One Move vs. Multiple Moves

Tables C.1 and C.2 describe the sample of immigrants and natives by number of

moves, and Tables C.3 and C.4 replicate the main analysis in the paper in the sample

to the single move population.

Table C.1: Descriptive statistics, immigrants

All cities 98 sample cities
Stayers Movers All Stayers Movers All

(1) (2) (3) (4) (5) (6)

(A): Children
Income at 28 66,926 67,847 67,108 68,111 68,536 68,191
Rank at 28 52.68 51.97 52.54 53.43 52.45 53.24

(B): Parents
Parents income 125,859 152,698 131,670 124,521 150,317 129,997
Parents rank 45 48.11 45.7 45.2 47.9 44.8

Number of children 125,959 30,310 156,269 112,472 26,192 138,664

Note: This table presents the means of immigrant children (Panel A) and their parents (Panel B), by number of moves between cities in
Israel. Stayers refer to migrants who were either born in Israel or immigrated and did not move within Israel by age 18, and movers refer
to those who moved between Israeli cities once. The left panel includes all cities in our sample, and the right includes only the 98 cities for
which we can estimate the effects for both immigration groups. Income is measured in Israeli Shekels (≈ 3.4$).

Table C.2: Descriptive statistics, natives

All cities 98 sample cities
1 move 2 moves Stayers 1 move 2 moves Stayers

(1) (2) (3) (4) (5) (6)

(A): Children
Income at 28 70,951 69,196 66,754 71,964 69,757 68,266
Rank at 28 53.38 51.06 53.09 53.86 51.36 53.86

(B): Parents
Parents income 242,214 198,267 199,978 239,465 194,519 201,033
Parents rank 64.1 58.4 58.9 64.0 57.9 59.3

Number of children 101,562 13,758 610,945 83,346 11,260 492,104

Note: This table presents the means of native-born children (Panel A) and their parents (Panel B), by number of moves between cities in
Israel. The left panel includes all cities in our sample, and the right includes only the 98 cities for which we can estimate the effects for both
immigration groups. Income is measured in Israeli Shekels (≈ 3.4$).

D Research Design Validation

Balance Test: Identification assumption requires that exposure time is not systematically

correlated with time-invariant factors, such as ability, or time-varying factors, such as
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Table C.3: Heterogeneity of location effects, single move

All cities Overlap cities

Cities Mean Std. Cities Mean Std. χ2 test
H0 : θj = θ1∀j

(1) (2) (3) (4) (5) (6) (7)

(i) By α and η
Natives

Cons. 142 0.154 0.214 92 0.180 0.215 143.9
(0.131) (0.065) (0.123) (0.053) [0.0004]

Rank-parents 142 -0.004 0.003 92 -0.003 0.003 150.7
(0.001) (0.001) (0.001) (0.001) [0.0001]

Immigrants
Cons. 93 0.640 0.259 92 0.650 0.260 203.8

(0.078) (0.044) (0.047) (0.044) [0.0000]
Rank-parents 93 -0.005 0.003 92 -0.005 0.003 204.2

(0.001) (0.000) (0.001) (0.000) [0.0000]
(ii) Total city effect
Natives

P25 142 0.056 0.178 92 0.1274 0.1768 134.4
(0.115) (0.055) (0.1109) (0.0465) [0.0026]

P75 142 -0.138 0.186 92 -0.0153 0.1806 131.2
(0.112) (0.055) (0.1107) (0.0417) [0.0046]

Immigrants
P25 93 0.521 0.235 92 0.5977 0.2358 193.1

(0.065) (0.042) (0.0329) (0.0421) [0.0000]
P75 93 0.284 0.273 92 0.4053 0.2743 187.0

(0.066) (0.042) (0.0388) (0.0423) [0.0000]

Note: This table reports estimates of the distribution of location effects for immigrant and native children. Columns (1)-(3) report
estimates for all cities, while columns (4)-(6) report estimates for cities with sufficient samples for both immigrants and natives. Columns
(2) and (5) report the mean, and columns (3) and (6) the square root of the bias-corrected variance component. Standard errors for all
variance estimators are based on the asymptotic variance, assuming location effects are drawn from a normal distribution.

Table C.4: Differences in location effects between immigrants and natives, single move

Difference

Covariance Correlation Implied OLS Mean Std. χ2 test
coefficient H0 : θjI − θjL = c ∀j

(1) (2) (3) (4) (5) (6)

α -0.0047 -0.0839 -0.069 0.5189 0.3571 156.6
(0.0180) (0.3213) (0.266) (0.1346) (0.0797) [0.0000]

[-0.6407, 0.4661] [-0.505, 0.335]
η 0.0000 0.6399 0.542 -0.0013 0.0025 118.3

(0.0000) (0.2040) (0.187) (0.0015) (0.0010) [0.0338]
[0.2605, 0.9901] [0.235, 0.923]

P25 -0.0105 -0.2528 -0.190 0.486 0.340 159.3
(0.0143) (0.3396) (0.256) (0.118) (0.072) [0.0000]

[-0.845, 0.320] [-0.643, 0.180]
P75 0.0014 0.0286 0.019 0.420 0.341 142.6

(0.0142) (0.2862) (0.189) (0.119) (0.075) [0.0006]
[-0.511, 0.575] [-0.322, 0.356]

Note: This table reports the relationship between the location effects of immigrants and natives. Column (1) presents the covariance,
column (2) presents the bias-corrected correlation, which is the covariance divided by the product of standard deviations of immigrants
and natives, and column (3) presents the implied OLS coefficient, which is the covariance divided by the variance of immigrants.
Column (4) presents the mean within-city gap between immigrants and natives, column (5) presents the standard deviation of the

within-city gap, and column (6) presents test statistics and p-values from χ2 test for the null that location effects don’t vary within
cities. Standard errors of the variance and covariances are based on the asymptotic variance, assuming location effects are drawn from
a normal distribution. Standard errors of the correlations and OLS slopes are calculated using the delta method. Squared brackets
display parametric bootstrapped equal-tailed confidence intervals.

parents’ investments, that affect the child’s income in adulthood. The figures below

provide our test for these assumptions.

Figure D.1 shows the relationship between native-born children’s age at first move

and parental characteristics. Sub-figures D.1b and D.1a display raw associations

(gray dots and error bars) and covariate-adjusted ones (blue dots), controlling for the

variables listed in Section 2.2. Parents’ years of schooling are obtained from the 1995
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census, which is available for 20% of the population. The more educated the parents,

the more likely they are to move when their children are younger. However, this

relationship disappears after controlling for xi, suggesting no systematic relationship

with time-invariant characteristics.

Sub-figure D.1c shows the relationship between age at move and parents’ earnings

growth during ages 0–5, using salary-employed earnings from 1986–1995, which are

not used to construct parental income ranks.29 The raw relationship suggests that

families who moved when children were older had higher early earnings growth.

However, after controlling for x, this relationship balances, supporting the assumption

that time-varying factors are not systematically related to age at move after controlling

for xi. Similarly, Figure D.2 shows the relationship between children’s age at arrival

in Israel and parental schooling. Figures D.4 and D.3 repeat the analysis for the

child’s age at the second move.

Figure D.1: Age at first move and parents’ characteristics, native-born children
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(a) Mother years of schooling
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(b) Father years of schooling
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(c) Wage growth, ages 0-5

Note: This figure presents the relationship between the child’s age at the move and the parents’ education. Confidence
intervals are based on family-level clustered standard errors.

Moving to cities with higher mean outcomes: To test the linearity assumption

and identify the age at which childhood location no longer impacts children’s outcomes,

we use a split-sample approach to test whether moving earlier to a city with higher

average outcomes improves children’s long-run outcomes (Chetty and Hendren, 2018).

For natives, we estimate each city’s mean age 28 income rank, Ȳj, using children whose

families never moved between cities before age 30. Then, in the sample of native-born

children whose families moved only once, we estimate the following regression:

Yi =
30∑

m=1

βm1{m(i) = m}∆o(i)d(i) + x′
iγ + ϵi, (13)

29It is excluded due to the missing self-employment income.
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Figure D.2: Age of arrival to Israel and parents’ characteristics, immigrants
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(b) Mother years of schooling

Note: This figure presents the relationship between the child’s age at the move to Israel and the parents’ education.
Confidence intervals are based on family-level clustered standard errors.

Figure D.3: Age at second move and parents’ characteristics, native-born children
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(c) Wage growth ages 1-5

Note: This figure presents the relationship between the child’s age at the second move and the parents’ education
and earnings. Confidence intervals are based on family-level clustered standard errors.

Figure D.4: Age at second moved between and parents’ characteristics, immigrants
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Note: This figure presents the relationship between the child’s age at the second move to Israel and the parents’
education. Controls include origin-destination-birth-year fixed effects and parents’ income rank interacted with the
year of birth. Confidence intervals are based on family-level clustered standard errors.

where m(i) is child’s i move age, o(i) and d(i) are child’s i origin and destination

cities, xi includes the controls described in section 2.2, and ∆od = Ȳd − Ȳo.βm are
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the parameters of interest, which measure the effect of moving at age m to a city

with one percent higher mean income rank. For immigrants, we compute Ȳj with the

Israeli-born immigrant children who remained in the same city until age 17. Since

they are included in the main sample, we randomly split the Israeli-born immigrant

sample into two subsamples, s ∈ 1, 2, and compute Ȳjs within each. Then, on the

sample of immigrants who stayed in the same Israeli city until age 18, we estimate:

Yi = β01{a(i) = 0}Ȳj(i)s′(i) +
17∑
a=1

βa1{a(i) = a}Ȳj(i) + x′
iγ + ϵi, (14)

where s′(i) is the split that excludes child i, and βa are the parameters of interest,

which measure the effect of arriving in Israel at age a to a city where Israeli-born

immigrants have a one percentile higher average income.

Figure D.5 plots the results. The estimates for natives show that βm declines linearly

for ages m < 18, indicating that earlier moves to higher-opportunity cities are

associated with higher income ranks at age 28–a pattern consistent with findings

from other countries. For ages m ≥ 18, the effect remains flat, consistent with the

Israeli context, where most children enlist in the army at 18–19 and are thus less

exposed to residential location. Figure D.5 shows a similar pattern for immigrants.

Figure D.5: Childhood exposure effects on earnings rank in adulthood
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(a) Natives
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(b) Immigrants

Note: This figure presents the exposure effect coefficients on earnings rank at age 28 for natives (a) and immigrants
(b). Confidence intervals are based on family-level clustered standard errors.

The kink at age 18 motivates a piece-wise regression, reported in columns (1) and (3)

of Table D.1. For natives, the slope above age 18 is small and statistically insignificant.

The slope below age 18 is 0.022 for natives and 0.033 for immigrants. These effects

are in line with, though slightly smaller than, previous findings in the U.S. (0.035 at

the county level, Chetty and Hendren, 2018), Australia (0.033, Deutscher, 2020), and
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Canada (0.042, Laliberté, 2021).

Robustness to family fixed effects: Figure D.6 presents the estimates from

Equations 13 and 14, with and without family fixed effects. Blue dots replicate

the estimates from Figure D.5, while gray dots show estimates controlling for family

FEs. The linear decline in βm (natives) and βa (immigrants) up to age 18 remains

consistent, though noisier. Similarly, columns (2) and (4) in Table D.1 show family

FE slopes of 0.019 for natives and 0.026 for immigrants, similar to those in columns

(1) and (3).

Table D.1: Years of exposure in childhood city and mean outcomes

Mean outcomes Posteriors

Natives Natives Immigrants Immigrants Immigrants Natives
(1) (2) (3) (4) (5) (6)

∆× below 18 -0.022 -0.019 -0.033 -0.027 -1.433 -0.743
(0.005) (0.011) (0.006) (0.013) (0.295) (0.204)

∆× above 18 0.006 0.005
(0.006) (0.008)

Family fixed effect No Yes No Yes No No
Obs. 95,500 70,549 138,664 110,462 138,664 95,500

Note: This table reports the linear slope coefficients of the exposure model. Columns (1) and (3) include the controls described in Section
2.2, and columns (2) and (4) include family fixed effects. Columns (5) and (6) present the slope coefficients on the posterior means and the
arrival age for immigrants and the age of move for natives. Standard errors in parentheses are clustered at the family level.

Figure D.6: Robustness to family fixed effects
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Note: This figure presents the exposure effect coefficients on child’s earnings rank at age 28 for natives (a) and
immigrants (b). Dashed lines are the linear fit with the corresponding slopes written below. Panel (a) presents the
effects for native-born Israeli children, and Panel (b) for immigrant children. Gray dots show results from a model
with family fixed effects. Blue dots are the results from Figure D.5. Confidence intervals are based on standard errors
clustered by family id.

Outcomes realized in childhood: Figure D.7 presents a placebo test using outcomes

realized before age 18, by estimating Equation 13 on children’s scores in the 5th-grade

national standardized exams, Meitzav. These exams cover subjects such as math,

science, English, and Hebrew/Arabic, resembling the OECD’s PISA test. They are

administered to a representative sample of schools, covering about 12% of the natives.
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Figure D.7: Exposure effects on 5th grade standardized exam scores for natives
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Note: This figure presents the exposure effect coefficients for the 5th grade Meitzav standardized exam score. Different
panels display results for students’ scores in different subjects: mathematics (a), science (b), English (c), and Hebrew
(d), measured in standard deviations. Confidence intervals are based on family-level clustered standard errors.

Since the exam is taken at age 11, estimates from ages 11–18 serve as a placebo test.

Note that because children who immigrated after the age of 11 never took the exam,

we can perform this exercise only for natives.

Test for linearity - The city-level mean outcomes used above combine location

effects and average ability, Ȳj = θj + ξ̄j. Thus, the relationship in Figure D.5 could

reflect either a linear relationship with location effects or a mix of linear relationships

with effects and with ξ̄j. To test whether the true location effects θjg themselves

linearly relate to years of exposure, we conduct an additional exercise. We regress

the estimated location effects of movers from Equation (2) on children’s income rank

by child’s age at move. To avoid mechanical correlation, we run Equation (2) on two

random split samples s(i) ∈ {1, 2}. Then, for every group g, city j, and sample split

s, we estimate θ̂sjgp and use it as a covariate in the following model for natives:

Yi =
18∑

m=1

βm1{m(i) = m}∆̂s′(i)
o(i)d(i)p(i) + x′

iγ + ϵi (15)

where s′(i) is the random sample that excludes child i, ∆̂s
od = θ̂∗sdgp− θ̂∗sogp, and θ̂∗sdgp are

the Empirical Bayes posterior means of θdgp. Similarly, for immigrants, we estimate :

Yi =
18∑
a=1

βa1{a(i) = a}θ̂∗sj(i)g(i) + x′
iγ + ϵi (16)

where Israeli-born immigrants are the base level. If exposure effects are linear, then

for immigrants, the coefficient βa gives us the number of θj’s accumulated in location

j as θ∗ is the one-year effect of city j. Thereby, the slope, βa+1 − βa, with respect

to exposure time, should be 1 on average. The results, presented in Figure D.8 and

Table D.1, show a linear relationship between the posterior means and the age of

move, with fitted slopes of 1.321 and 0.841, statistically indistinguishable from 1.
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Figure D.8: relationship between age of arrival/move and posterior mean
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Note: This figure displays the βa coefficients from Equations (15) for immigrants and (16) for natives. Confidence
intervals are based on standard errors clustered by family id.

E Variance Componenets

Denote Ω ∈ R4×4 the variance covariance matrix of θj = (αjN , ηjN , αjI , ηjI). The

maximum likelihood variance of elements of θj is σ2
g =

∑J
j=1 πj(wjg −

∑J
j=1 πjwj)

2,

where wjg ∈ {αjg, ηjg}, and πj =
nj

N
are city shares , with nj is city j population size,

and N =
∑J

j=1 nj. Note that we can write the variance also as:

σ2
g =

J∑
j=1

(1− πj)πjw
2
jg − 2

J∑
j=1

J∑
k=j+1

πjπkwjgwkg ≡ SML. (17)

Let wg = (w1g, ..., wJg)
′. Then we can write (17) as a quadratic form:

SML = z′Ãz, where Ã =


(1− π1)π1 −π1π2 · · · −π1π2

−π2π1 (1− π2)π2 · · · −1
...

...
. . .

...

−πJπ1 −πJπ2 · · · (1− πJ)πJ

 .

For the unbiased estimator we multiply by NI

NI−1
: SU = N

N−1
SML. We do not observe

θ but its noisy estimate θ̂ and its sampling variance Σ. The unbiased estimate for the

variance is therefore: θ̂′Bθ = θ̂′Bθ̂ − Tr(BΣ), where Tr(·) is the trace operator.

F Intermarriage and Location Effects

We evaluate the role of cultural assimilation in location effect heterogeneity by examining

whether places that causally increase the probability of Russian-Israeli intermarriage

also affect children’s long-run economic outcomes. We begin by estimating Equation

2 on the sample of immigrants using an intermarriage indicator. In Table F.1, which

reports the variance components of the intermarriage location effects, suggests that
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Table F.1: Variance component for intermarriage location effects

W/ income interaction W/o income interaction

Immigrants Natives Immigrants
(1) (2) (3)

Std α 0.0037 0.00004 0.0041
(0.0003) (0.0056) (0.0003)

Std η 0.00004 -
(0.00001) -

Note: This table reports the standard deviation of location effect on the probability for an intermarrige between Russians
and immigrants. In column 1, the location effects vary linearly by parents’ income rank, and in column 3, they don’t.
Column 1 gives the results for immigrants and column 2 for natives. Missing value indicates a negative variance component.

places do affect the likelihood of intermarriage, although these effects do not vary by

parental income. Therefore, our final measure for intermarriage location effects is the

slope parameter on years of exposure in each city—similar to Equation 2 but without

the interaction with parental income (column 3). Lastly, in Table F.2, we present the

coefficients from a weighted least squares regression of income rank location effects

on the posterior mean intermarriage location effects.

Table F.2: Intermarriage and child income ranks location effects

Immigrants Natives

θ25 θ25 θ75 θ75 θ25 θ25 θ75 θ75
(1) (2) (3) (4) (5) (6) (7) (8)

Post. mean intermarrige effect 0.17 0.11 0.59 0.52 -0.07 -0.12 0.28 0.21
(0.18) (0.18) (0.20) (0.20) (0.18) (0.18) (0.17) (0.16)

Controls No Yes No Yes No Yes No Yes
# of cities 98 98 98 98 98 98 98 98

Note: This table reports the relationship between the location effects on income rank and the location effects on immigrants’ intermarriage
probability. In columns 1-2, the dependent variable is immigrants’ location effects for p = 25, in columns 2-4, it’s immigrants’ location effects
for p = 75, in columns 5-6, it’s natives’ location effects for p = 25, and in columns 7-8, it’s natives’ location effects for p = 75. Controls
include population size in 2003, the diversity index, and locality welfare expenditure per capita.

G The Joint Distribution of Location Effects

For evrey city j, let θg be the J×1 vector of location effects of group g ∈ {N , I}, with
the corresponding J × 1 vector θ̂g of estimated location effects. We assume θ̂g follows

a normal distribution: θ̂g ∼ N (θg,Σg), which can be justified by the central limit

theorem with a growing number of families in each city. This section estimates the

joint distribution of location effects while allowing the mean location effects to vary

linearly with a few city-level covariates zj. Ignoring the p subscript for simplicity, our

model is described by:

θjg = z′jβg + νjg, νj|zj,Σ
iid∼G; θ̂jg = θjg + ujg, Ug|zj,Σ ∼ N (0,Σ)

for g ∈ {N , I}, where νj = (νjN , νjI)
′, Ug = (u1g, ..., uJg), Σ is the 2J × 2J sampling

error covariance matrix with Σg on the diagonal and zeros in the off-diagonal, and

zj is a p × 1 vector of city level covariates, with z = (z1, ..., zp) the J × p design
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matrix. The prior distribution of immigrant-native location effects are defined by

β = (βN , βI)
′ and G, the distribution of νj. We estimate β with city-size Weighted

Least Squares regression and form each group’s J ×1 residual rjg = θ̂jg− z′jβg. Then,

in the second step, we estimate the joint distribution of rj = (rjN , rjI)
′.

Choice of zj: Tables G.1 and G.2 report the estimates of β and corresponding

variance components using diffrent covariates zj. Our preferred model, presented in

column (2), is chosen as the one that maximizes the explanatory power of location

effects of both immigrants and natives.

G.1 Log-spline Estimator

We start by estimating the marginal distribution of each νjg nonparametrically using

the deconvolution estimator from Efron (2016), where the prior distribution belongs

to an exponential family, estimated flexibly by a fifth-order spline. Spline parameters

are estimated via penalized maximum likelihood, weighted by the number of residents

in each city. The penalization parameter is chosen to match the mean and method

of moments variance estimate νj reported in panel (ii) in Tables G.1 and G.2. Figure

G.1 plots the marginal deconvolved distribution of νjg separately for every g ∈ {N , I}
(solid blue line) together with the density of a normal distribution with the same mean

and variance (dashed line). Results strongly suggest that each marginal distribution

is well approximated by a normal distribution.

Figure G.1: Deconvolved density of immigrants’ and natives’ location effects

(a) θ25 Natives (b) θ25 immigrants (c) θ75 Natives (d) θ75 immigrants

Note: These figures plot the distribution of the residuals of immigrants’ and natives’ location effects. Residuals are
the difference between the estimated location effects θ̂ and the z′jβ, where β is taken from column (2) in Tables G.1

and G.2. The solid blue line shows the Efron (2016) deconvolved log-spline density. Histograms show the estimated
location effects. Dashed lines show the density of a normal distribution with the same mean and variance.

G.2 Normal Prior

Following the previous results, we assume thatG follows a mean-zero normal distribution

with variance Ω. Therefore, the joint distribution of θ̂ is given by: θ̂|β,Ω,Σ, z ∼
N (µ(z), V ), where µ(z) = (z′βN , z′βNI)

′, V = Ω̌ + Σ̃, Ω̌ = Ω ⊗ IJ , and IJ is J × J
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unit matrix, and the posterior distribution we use for decision-making is:

θ|θ̂,Σ,Ω, µθ(z), z ∼ N(θ∗(z), (Ω̌−1
ν + Σ−1)−1), where

θ∗(z) ≡ E[θjg|θ̂, z] = (Ω̌−1
ν + Σ̃−1)−1

(
Ω̌−1

ν µ̌θ(z) + Σ̃−1θ̂
)
.

Table G.1: Location effect hyperparameters (p = 25)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(i) Mean
Intercept (I) 0.098 -0.111 -0.028 0.016 -0.084 -0.071 -0.108 -0.040 -0.081 -0.123

(0.081) (0.165) (0.122) (0.119) (0.162) (0.173) (0.178) (0.176) (0.153) (0.174)
Intercept (N) 0.389 0.331 0.366 0.362 0.328 0.413 0.357 0.387 0.386 0.357

(0.072) (0.147) (0.105) (0.103) (0.147) (0.245) (0.247) (0.246) (0.168) (0.181)
Diversity (I) 0.439 0.466 0.469 0.267

(0.232) (0.242) (0.291) (0.200)
Diversity (N) 0.122 0.118 0.122 0.122

(0.241) (0.240) (0.242) (0.243)
Welf. expnd. (I) -0.003 -0.001 -0.002 0.001 0.001 0.001 -0.002 -0.002 0.001 0.001

(0.012) (0.012) (0.012) (0.015) (0.015) (0.013) (0.013) (0.013) (0.012) (0.013)
Welf. expnd. (N) -0.048 -0.048 -0.048 -0.048 -0.048 -0.049 -0.049 -0.049 -0.049 -0.049

(0.014) (0.014) (0.014) (0.014) (0.014) (0.017) (0.017) (0.017) (0.013) (0.013)
log se (I) -0.116 0.012 -0.016 -0.081 -0.072

(0.084) (0.112) (0.108) (0.051) (0.050)
log se (N) 0.017 0.019 0.015 0.015 0.019

(0.171) (0.166) (0.168) (0.087) (0.087)
Pop. size (I) 0.005 0.004 0.005 -0.001 0.005 0.004

(0.002) (0.002) (0.002) (0.003) (0.005) (0.005)
Pop. size (N) -0.000 -0.001 -0.000 0.000 -0.000 0.000

(0.003) (0.003) (0.003) (0.006) (0.005) (0.005)
Share imm. (I) 0.600 0.606 0.548 0.336

(0.291) (0.305) (0.329) (0.229)
Share imm. (N) 0.111 0.110 0.109 0.109

(0.311) (0.310) (0.309) (0.311)
(ii) Rand. effects

σN 0.180 0.179 0.180 0.180 0.179 0.180 0.179 0.180 0.180 0.179
(0.0471) (0.0472) (0.0470) (0.0473) (0.0472) (0.0472) (0.0473) (0.0474) (0.0476) (0.0474)

σI 0.166 0.154 0.154 0.162 0.160 0.158 0.154 0.154 0.156 0.155
(0.0520) (0.0517) (0.0515) (0.0516) (0.0516) (0.0520) (0.0518) (0.0514) (0.0520) (0.0521)

ρ -0.012 -0.053 -0.038 -0.044 -0.060 0.005 -0.057 -0.032 -0.014 -0.025
(0.670) (0.920) (1.100) (0.682) (0.876) (1.170) (0.764) (0.806) (0.744) (0.746)

(iii) Implied total var.
Natives 0.209 0.207 0.208 0.208 0.208 0.209 0.208 0.208 0.208 0.208

(0.041) (0.041) (0.041) (0.041) (0.041) (0.041) (0.041) (0.041) (0.041) (0.041)
Immigrants 0.169 0.175 0.174 0.177 0.178 0.176 0.174 0.174 0.177 0.178

(0.052) (0.049) (0.049) (0.050) (0.050) (0.050) (0.049) (0.049) (0.049) (0.049)
Correlation 0.019 -0.003 0.004 -0.028 -0.033 0.001 -0.008 0.005 0.005 0.005

(0.4819) (0.3933) (0.4256) (0.4010) (0.4954) (0.7701) (0.4225) (0.4192) (0.4060) (0.3795)
[-

0.736,
0.832]

[-
0.699,
0.713]

[-
0.694,
0.728]

[-
0.739,
0.665]

[-
0.742,
0.672]

[-
0.698,
0.700]

[-
0.698,
0.707]

[-
0.684,
0.714]

[-
0.667,
0.701]

[-
0.670,
0.710]

R2 Natives 0.258 0.252 0.251 0.251 0.259 0.258 0.259 0.251 0.251 0.259

R2 Immigrants 0.035 0.226 0.217 0.162 0.192 0.194 0.217 0.217 0.223 0.242
# of cities 98 98 98 98 98 98 98 98 98 98

Note: This table reports the estimates of the joint distribution of native-born and immigrant location effects for families in the 25th
percentile of the income distribution. Panel (i) reports the mean native (N) and immigrant (I) location effects, a linear function of
city-level covariates. Panel (ii) reports the standard deviation (σ) and the correlation (ρ) of the νj , the random effects, and panel (iii)

reports the implied total standard deviation, defined as
√

β2
gV(z) + σ2

g for every group g ∈ {I,N}, and the implied correlation, which

is the ratio between Cov(z′jβI , z′jβI) + ρσIσN and the product of the implied standard deviation of immigrants and natives. R2 is

the group specific ratio between variance share
β2
gV(z)

β2
gV(z)+σ2

g
. Panel (i) was estimated by a city-size weighted least squares regression.

In panel (i), robust standard errors are reported in parentheses. In panels (ii)-(iii), parentheses report the parametric bootstrapped
standard errors, and square brackets report parametric bootstrapped equal-tailed confidence intervals.

G.3 Hierarchical Bayes

To assess the sensitivity of our EB policy estimates to hyperparameter noise, we add a

robustness exercise based on a hierarchical Bayesian model. We assume the following

18



Table G.2: Location effect hyperparameters (p = 75)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(i) Mean
Intercept (I) 0.291 -0.002 0.106 0.149 0.023 -0.104 -0.104 -0.070 -0.014 -0.063

(0.093) (0.179) (0.131) (0.140) (0.181) (0.196) (0.197) (0.208) (0.157) (0.183)
Intercept (N) 0.123 -0.054 0.047 0.069 -0.042 -0.090 -0.397 -0.291 -0.162 -0.247

(0.067) (0.107) (0.084) (0.088) (0.110) (0.228) (0.271) (0.275) (0.173) (0.176)
Diversity (I) 0.617 0.643 0.119 0.344

(0.289) (0.299) (0.515) (0.287)
Diversity (N) 0.371 0.383 0.436 0.397

(0.190) (0.188) (0.203) (0.189)
Welf. expnd. (I) -0.015 -0.013 -0.014 -0.011 -0.010 -0.001 -0.003 -0.004 -0.008 -0.008

(0.016) (0.016) (0.016) (0.020) (0.019) (0.018) (0.020) (0.020) (0.015) (0.015)
Welf. expnd. (N) -0.033 -0.031 -0.032 -0.031 -0.030 -0.023 -0.017 -0.018 -0.024 -0.024

(0.012) (0.013) (0.012) (0.014) (0.014) (0.014) (0.015) (0.015) (0.011) (0.010)
log se (I) -0.247 -0.211 -0.185 -0.118 -0.113

(0.097) (0.178) (0.150) (0.060) (0.062)
log se (N) -0.141 -0.207 -0.208 -0.122 -0.111

(0.152) (0.145) (0.159) (0.084) (0.079)
Pop. size (I) 0.005 0.004 0.005 -0.007 -0.006 -0.004

(0.003) (0.003) (0.003) (0.005) (0.009) (0.008)
Pop. size (N) 0.002 0.002 0.002 -0.002 -0.004 -0.004

(0.002) (0.002) (0.002) (0.004) (0.004) (0.004)
Share imm. (I) 0.882 0.887 0.307 0.515

(0.378) (0.395) (0.588) (0.348)
Share imm. (N) 0.357 0.360 0.476 0.425

(0.262) (0.265) (0.291) (0.271)
(ii) Rand. effects

σN 0.161 0.152 0.157 0.159 0.153 0.159 0.146 0.152 0.153 0.148
(0.0449) (0.0451) (0.0448) (0.0454) (0.0449) (0.0449) (0.0451) (0.0451) (0.0448) (0.0446)

σI 0.211 0.191 0.190 0.196 0.195 0.186 0.186 0.185 0.186 0.187
(0.0468) (0.0473) (0.0478) (0.0472) (0.0474) (0.0483) (0.0479) (0.0479) (0.0476) (0.0478)

ρ 0.420 0.327 0.366 0.387 0.343 0.340 0.341 0.326 0.340 0.331
(0.683) (0.675) (0.623) (0.595) (0.777) (0.584) (1.622) (1.232) (0.971) (0.790)

(iii) Implied total var.
Natives 0.178 0.177 0.178 0.176 0.177 0.179 0.181 0.180 0.178 0.178

(0.042) (0.040) (0.041) (0.042) (0.041) (0.041) (0.039) (0.040) (0.040) (0.039)
Immigrants 0.216 0.222 0.222 0.223 0.224 0.232 0.230 0.229 0.225 0.225

(0.046) (0.040) (0.041) (0.041) (0.041) (0.038) (0.038) (0.038) (0.039) (0.039)
Correlation 0.453 0.459 0.453 0.446 0.454 0.338 0.511 0.456 0.459 0.490

(0.3608) (0.3577) (0.3695) (0.7962) (0.3596) (0.2771) (0.2962) (0.3051) (0.3459) (0.3580)
[-0.071,
1.222]

[-0.004,
1.179]

[-0.020,
1.170]

[-0.039,
1.162]

[-0.010,
1.176]

[-0.113,
0.915]

[0.085,
1.171]

[0.020,
1.105]

[0.013,
1.151]

[0.049,
1.195]

R2 Natives 0.182 0.263 0.222 0.184 0.253 0.211 0.349 0.287 0.261 0.309

R2 Immigrants 0.046 0.260 0.268 0.227 0.242 0.357 0.346 0.347 0.317 0.309
# of cities 98 98 98 98 98 98 98 98 98 98

Note: This table reports the estimates of the joint distribution of native-born and immigrant location effects. Panel (i) reports the mean
native (N) and immigrant (I) location effects, a linear function of city-level covariates. Panel (ii) reports the standard deviation (σ) and

the correlation (ρ) of the νj , the random effects, and panel (iii) reports the implied total standard deviation, defined as
√

β2
gV(z) + σ2

g

for every group g ∈ {I,N}, and the implied correlation, which is the ratio between Cov(z′jβI , z′jβI) + ρσIσN and the product of

the implied standard deviation of immigrants and natives. R2 is the group specific ratio between variance share
β2
gV(z)

β2
gV(z)+σ2

g
. Panel

(i) was estimated by a city-size weighted least squares regression. In panel (i), robust standard errors are reported in parentheses. In
panels (ii)-(iii), parentheses report the parametric bootstrapped standard errors, and square brackets report parametric bootstrapped
equal-tailed confidence intervals.

flat priors: βpg ∼ N(0, S), σg ∼ InverseGamma(S−1, S−1), ρ ∼ Uniform[−1, 1],

experimenting with two values for S ∈ {5, 1000}. We estimate the model by sampling

from the posterior distribution of location effects and hyperparameters, conditional

on the data, using Hamiltonian Monte Carlo (HMC), a modern Markov chain Monte

Carlo (MCMC) method implemented in the Python NumPyro package.

As can be seen in Table G.3, which reports the EB and hierarchical Bayes (HB)

estimates of the mean and variance for immigrants and natives, the two methods result

in very similar estimates, especially for the less informative prior when S = 1000. In

line with that, Table G.4 reports the list of selected cities under the hierarchical Bayes
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Table G.3: Hyperparameters estimates, EB and full Bayes

µ(z) Immigrants µ(z) Natives Variance

EB HB
(S=5)

HB
(S=1000)

EB HB
(S=5)

HB
(S=1000)

EB HB (S=5) HB (S=1000)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept -0.228 -0.173 -0.176 0.197 0.191 0.137 σN 0.179 0.197 0.122
(0.165) (0.193) (0.156) (0.147) (0.198) (0.165) (0.047) (0.029) (0.027)

Population 0.004 0.004 0.005 -0.001 -0.001 -0.001 σI 0.154 0.231 0.143
(0.002) (0.005) (0.003) (0.003) (0.005) (0.004) (0.052) (0.037) (0.042)

Diversity 0.439 0.408 0.402 0.122 0.122 0.274 ρ -0.053 -0.256 -0.159
(0.232) (0.294) (0.229) (0.241) (0.307) (0.258) (0.920) (0.357) (0.328)

Welf. expnd. -0.001 -0.010 -0.010 -0.048 -0.045 -0.049 [-0.699, 0.713] [-0.816, 0.506] [-0.737, 0.507]
(0.012) (0.022) (0.017) (0.014) (0.027) (0.022)

Note: This table reports the estimates of the hyperparameters governing the distribution of location effects for immigrants and natives.
Columns 1–3 and 4–6 report the coefficients for the mean location effects of immigrants and natives, respectively, where the mean is modeled
as a linear function of city-level covariates: population size (in thousands), diversity index, and municipal welfare expenditure per capita.
Columns 7–9 report the parameters for the variance of the random effects. The EB hyperparameters were estimated via weighted least
squares (for the mean) and the method of moments (for the variance), while the full hierarchical Bayes (HB) hyperparameters were estimated
via Hamiltonian Monte Carlo (HMC). Values in parentheses are standard errors for EB estimates and posterior standard deviations for FB
estimates. Square brackets report parametric bootstrapped equal-tailed confidence intervals for the EB estimate of ρ, and the posterior
credible interval for the FB estimate of ρ.

model with the uninformative prior (S = 1000) and shows that the list of selected

cities aligns closely with the list selected via the EB procedure we take in the paper.

Table G.4: Selected cities based on minimax criterion, K = 10, full Bayes estimates

Posterior mean

Native-
born

Imm. Average E[max{ϑN , ϑI}|Y] Worse than
status-quo

Selected by minimax
(I/N/city)

Loc. name (1) (2) (3) (4) (5) (6)

Bat Yam 128.2 145.3 139.9 198.5 0.004 Yes ( 631.7)
Rishon Leziyyon 245.3 211.4 217.7 280.1 0.008 Yes ( 631.7)
Holon 270.6 264.8 265.8 325.0 0.043 Yes ( 631.7)
Haifa 219.1 331.4 300.9 344.6 0.115 Yes ( 631.7)
Qiryat Gat 286.0 213.7 237.3 368.5 0.240 Yes ( 631.7)
Ashdod 46.3 381.7 258.9 381.9 0.234 Yes ( 631.7)
Karmi’el 237.3 316.3 285.3 396.2 0.301 Yes ( 631.7)
Bene Ayish 321.7 282.4 305.2 449.1 0.433 Yes ( 631.7)
Be’er Sheva 401.4 400.8 401.0 456.1 0.393 Yes ( 631.7)
Kokhav Ya’ir 405.8 162.0 207.3 472.4 0.490
Ma’alot-tarshiha 342.5 383.2 363.7 497.8 0.533
Qiryat Motzkin 437.3 311.4 339.1 500.6 0.571 Yes ( 631.7)
Arad 283.7 436.3 372.3 503.6 0.545
Yoqne’am Illit 356.8 403.7 391.3 517.7 0.587
Ari’el 317.7 428.3 380.7 518.1 0.569

Note: This table reports a list of 15 Israeli cities sorted by within-city posterior immigrant-native maximum regret. Posterior estimates
are based on a full hierarchical Bayesian model reported in columns 3, 6, and 9 in Table G.3. Columns 1-3 report the posterior mean regret
of native-born children, immigrants, and the average. Column 4 reports the posterior maximum (N , I). Column 5 reports the posterior
probability that the location effects of immigrants or of natives are lower than their average effect under the status quo sorting patterns.
Column 6 reports the cities selected based on the minimax (N/I/city) policy that ranks lists of 10 cities based on their posterior maximum
(N , I)/city regret (reported in parentheses).

H Full List of the Posterior Mean Location Effects
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Table H.1: Forecast of location effects

p = 25 p = 75

Posterior mean imm. Posterior mean natives Posterior mean imm. Posterior mean natives

Loc. Code Name (1) (2) (3) (4)

246 Netivot 0.265 -0.177 0.244 -0.005

7100 Ashqelon 0.255 -0.020 0.311 0.108

70 Ashdod 0.234 0.069 0.467 0.112

6200 Bat Yam 0.183 0.233 0.461 0.397

2560 Arad 0.162 0.064 0.142 0.124

4100 Qazrin 0.157 -0.005 0.148 0.060

9100 Nahariyya 0.150 -0.185 0.072 -0.225

1139 Karmi’el 0.143 0.142 0.075 0.104

2200 Dimona 0.140 0.077 0.407 0.190

2100 Tirat Karmel 0.130 -0.124 0.087 -0.042

4000 Haifa 0.130 0.149 -0.054 0.112

3640 Qarne Shomeron 0.105 0.089 0.192 0.110

3570 Ari’el 0.104 -0.029 0.079 0.018

7600 Akko 0.103 -0.231 0.313 0.077

240 Yoqne’am Illit 0.101 0.067 0.137 0.131

1137 Qiryat Ye’arim 0.100 -0.040 0.100 0.019

8300 Rishon Leziyyon 0.100 0.167 0.280 0.174

99 Mizpe Ramon 0.095 -0.028 0.103 0.014

8400 Rehovot 0.094 -0.078 -0.037 -0.055

1034 Qiryat Mal’akhi 0.090 -0.250 0.140 -0.120

6600 Holon 0.090 0.148 0.167 0.157

5000 Tel-Aviv 0.088 -0.193 0.105 -0.033

31 Ofaqim 0.087 -0.158 -0.034 0.050

2630 Qiryat Gat 0.085 0.171 0.244 0.202

3780 Betar Illit 0.079 0.217 0.069 0.059

874 Migdal Haemeq 0.075 -0.232 -0.067 -0.151

7700 Afula 0.070 0.003 0.209 0.144

76* Gush Etzion 0.069 0.095 0.111 0.097

73* Mateh Binyamin 0.067 0.057 0.076 0.072

2660 Yavne 0.063 0.020 0.094 -0.012

8500 Ramla 0.058 -0.043 0.218 0.064

1063 Ma’alot-tarshiha 0.056 0.100 0.093 0.115

7000 Lod 0.044 -0.046 0.119 0.020

1066 Bene Ayish 0.044 0.096 0.072 0.103

1* Upper Galilee 0.040 -0.163 -0.048 -0.140

2500 Nesher 0.038 -0.022 -0.004 -0.039

1020 Or Aqiva 0.034 -0.158 0.135 -0.013

9500 Qiryat Bialik 0.033 -0.036 -0.038 0.018

8700 Ra’annana 0.033 0.001 0.080 0.031

2800 Qiryat Shemona 0.032 -0.058 -0.019 -0.015

38* Eshkol 0.030 0.033 -0.055 -0.029

6700 Tiberias 0.027 0.068 0.142 0.098

2400 Or Yehuda 0.025 -0.079 0.271 0.075

812 Shelomi 0.024 -0.380 -0.052 -0.211

9000 Be’er Sheva 0.021 0.037 -0.058 -0.033

3650 Efrata 0.013 0.195 0.084 0.207

6300 Giv’atayim 0.008 -0.074 0.086 -0.026

6100 Bene Beraq 0.008 -0.305 0.120 -0.143

9600 Qiryat Yam 0.006 0.083 0.232 0.141

7900 Petah Tiqwa 0.006 -0.020 0.106 0.024

565 Azor 0.005 -0.014 -0.034 -0.008

1061 Nazerat Illit 0.002 -0.084 0.005 -0.031

2034 Hazor Hagelilit 0.001 0.032 -0.007 0.016

7400 Netanya 0.000 -0.001 0.191 0.084

1031 Sederot -0.006 -0.083 0.160 0.044

6900 Kefar Sava -0.013 0.060 -0.094 0.048

8200 Qiryat Motzkin -0.017 0.177 0.035 0.179

831 Yeroham -0.027 0.022 -0.074 -0.021

72* Shomron -0.032 0.193 -0.016 0.126

2530 Be’er Ya’aqov -0.038 -0.012 -0.114 -0.020

Continued on next page
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Table H.1: Forecast of location effects (cont.)

p = 25 p = 75

Posterior mean imm. Posterior mean natives Posterior mean imm. Posterior mean natives

Loc. Code Name (1) (2) (3) (4)

1224 Kokhav Ya’ir -0.039 0.195 0.005 0.071

9400 Yehud -0.040 -0.010 -0.102 -0.079

168 Kefar Yona -0.042 -0.087 -0.135 -0.194

3616 Ma’ale Adummim -0.056 0.140 -0.081 0.039

7200 Nes Ziyyona -0.058 -0.002 -0.109 -0.101

1015 Mevasseret Ziyyon -0.060 0.229 -0.071 -0.019

2620 Qiryat Ono -0.062 -0.027 -0.107 -0.142

469 Qiryat Eqron -0.062 0.162 -0.173 -0.015

9700 Hod Hasharon -0.064 0.177 -0.047 0.049

15* Hof HaCarmel -0.072 -0.210 -0.150 -0.182

26* Mateh Yehuda -0.077 0.074 -0.117 -0.094

6* Emek HaYarden -0.082 -0.190 -0.221 -0.218

9200 Bet She’an -0.086 -0.007 -0.180 -0.135

8000 Zefat -0.089 0.062 -0.038 0.023

3611 Qiryat Arba -0.091 -0.261 -0.205 -0.245

8600 Ramat Gan -0.100 0.151 -0.196 0.028

6800 Qiryat Atta -0.104 0.069 -0.095 0.006

2600 Elat -0.105 0.125 0.114 0.159

166 Gan Yavne -0.106 0.018 -0.125 0.032

71* Golan -0.107 0.065 -0.175 -0.065

56* Misgav -0.110 0.067 -0.141 -0.057

9300 Zikhron Ya’aqov -0.115 0.015 -0.130 0.022

6500 Hadera -0.119 0.247 -0.006 0.089

2650 Ramat Hasharon -0.125 0.100 -0.121 -0.007

7* Emek HaMaayanot -0.130 -0.002 -0.193 -0.115

9* Jezreel Valley -0.134 0.087 -0.187 -0.014

2640 Rosh Haayin -0.137 0.150 -0.139 0.004

6400 Herzliyya -0.153 -0.164 -0.223 -0.102

681 Giv’at Shemu’el -0.155 -0.085 -0.252 -0.116

33* Be’er Tuvia -0.156 -0.033 -0.202 -0.104

2610 Bet Shemesh -0.159 -0.012 -0.035 0.207

30* Gezer -0.170 0.095 -0.175 0.024

42* Merhavim -0.170 -0.351 -0.407 -0.447

8* Gilboa -0.173 0.160 -0.156 -0.011

16* Hefer Valley -0.180 -0.064 -0.243 -0.133

2550 Gedera -0.194 -0.005 -0.239 -0.099

4* Mateh Asher -0.207 0.001 -0.359 -0.203

7800 Pardes Hanna-karkur -0.216 -0.115 -0.297 -0.058

Note: This table presents the posterior mean location effects for immigrant and native born Israeli children. Columns 1-2 report the

posterior mean location effects for children with parents at the 25th percentile of the national income distribution, and columns 3-4

report the effects for children with parents at the 75th percentile of the income distribution. Locations are listed with their name and

location code, where an asterisk marks regional council codes. The table is sorted by the posterior mean of immigrants with p = 25.

I Policy Simulations and Estimation

Estimating the minimax policies: The model in Section 9.3 describes decision

rules that require estimating the posterior expectation of the maximum. We estimate

these policies using a simulation: we draw 1000 samples from the posterior distribution,

and within each draw, we estimate the minimax policies. For the (N , I, city) policy,
we approximate the optimal decision rule using a beam search, which restricts the

search space to the top-30 most promising candidate city combinations at each step,

based on interim regret values. This allows us to efficiently approximate the minimax

regret without exhaustively evaluating all the
(
98
10

)
possible subsets.
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Simulation of policy counterfactuals: To produce Figure 6, we draw θj for the

98 cities and groups from the prior distribution in Column (2) of Table G.1. Given

a fixed set of cities, we then simulate 2000 iid draws of the noise from a normal

distribution with variance Σ and compute θ̂j. Then, to compute the EB policies,

we draw 1000 samples from the posterior distribution of each simulation and follow

the procedure mentioned above. After computing the policy for every simulation, we

calculate each group’s average and max regret among selected cities and collect the

mean value, averaging across the 2000 simulations. To get the performance of an

average DGP, we repeat this entire procedure 100 times and report the average.

J Restricted Choice Model

This section describes an extended model that restricts the sorting probabilities to

better align with the spatial distribution in the data while maintaining compliance

uncertainty. Let πjg0 ∈ (0, 1) be the share of group g ∈ {N , I} individuals who

live in city j in the absence of any policy such that
∑

j(πjN0 + πjI0) = 1, and let

πg(δ) = (πjg(δ), ..., πJg(δ))
′ be the location choice probability of group g ∈ {N , I}

given a policy δ. To rule out sorting probabilities that deviate from the status-quo

sorting patterns, we consider only choice probabilities π(δ) = (πN (δ)′, πI(δ)
′)′ whose

distance from the status quo sorting π0 = (π′
0N , π′

0I)
′ is bounded. The distance

between π(δ) and π0 is measured with the Total Variation distance function, which

gives the largest absolute difference between the probability distributions across all

cities: TVπ0(π(δ)) = sup(j,g)∈{1,..,J}×{N ,I}|πjg(δ)− π0jg|.

With this metric, TVπ0(π) = 0 implies that families’ location choices follow the status

quo distribution, while as TV (π) → 1, all families belong to a single group and sort

into a single location. We study the optimal policy under a hypothetical bound on

the tendency of families to deviate from the status-quo shares: TV (π) ≤ a, where

a ∈ [0, 1] is the degree of compliance uncertainty. This restriction, together with the

logical bound of πjg(δ) ∈ [0, 1] and of πjg(δ) = 0 if δj = 0, implies that for every

g ∈ {N , I}, location choices for city j with δj = 1 is:

πjg(δ) ∈ [max{π̃δ
jg0 − a, 0},min{π̃δ

jg0 + a, 1}], with π̃δ
jg0 =

πjg0∑
j(πjN0 + πjI0)δj

, (18)

where π̃δ
jg0 is the status quo shares normalized to sum to one across selected cities.

These restrictions ensure that location choices approximately follow the status quo

distribution while maintaining ambiguity regarding compliance (“Where do they
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go?”) and families’ group affiliation (“Who shows up?”) governed by the parameter

a > 0. The minimax decision-maker would like to choose the δ robust to the least

favorable behavioral responses. For any δ, the maximum regret is:

Lmax
R (ϑ, δ) = max

π(δ)
L(ϑ, δ, π(δ)) s.t Eqs (18),

∑
j

(πjN (δ) + πjI(δ)) = 1, (19)

where L(ϑ, δ, π(δ)) is defined in Equation (11), and δ is chosen to minimize: RN ,I,city
R (δ) =

E[Lmax
R (ϑ, δ)|Y ], subject to

∑
j δj = K. Similar to the policy in Equation (12), this

decision rule ranks lists of size K places based on the expected maximum regret under

the least favorable compliance. Unlike the unrestricted model, here the decision-maker

assumes that there is a distribution of families across all recommended cities, ruling

out the possibility that all families sort to a single least-beneficial location. The

smaller the value of a, the more location choices align with the status-quo sorting

pattern. When a = 0, lists of places are ranked based on the posterior average

status quo regret
∑

j δjE[π̃
δ
jN0ϑjN10 + π̃δ

jI0ϑjI10]. In contrast, when a → 1, the

decision-maker faces more uncertainty regarding families’ behavioral responses, and

the optimal decision approaches the one reported in Equation (12).

Estimation: We estimate this decision rule with a bootstrap simulation. Given a

value of a ∈ [0, 1], we estimate the bootstrap average maximum risk: R∗N ,I,city
R (δ) =

E
∗[Lmax(ϑ, δ)|Y ], where E∗ is the expectation with respect to the S bootstrap draws

from the posterior distribution of θ|Y , and in each bootstrap draw we solve Equation

(19) by linear programing. The minimax policy is then: δ∗N ,I,city
K,R = argminδ R∗N ,I,city

R (δ).

Resutls: Table J.1 reports the top 10 selected cities for a = 0.01 and a = 0.9.

When location choices are restricted to align closely with the status quo distribution

(a = 0.001), the selected cities provide low regret levels for native-born families, since

they constitute the majority in each city in the status quo. In contrast, for a = 0.9,

the selected cities offer more equal outcomes for both groups. The average regret

for each city does not exceed 483 lost shekels per year compared with the oracle’s

first-best policy.

Microfoundation: LetDi ∈ {1, ..., J} be individual i’s location choice to one of the

J cities. We assume preferences follow the choice model: Di = argmaxj∈{1,...,J} Uij −
(aij + bijδj), for every g ∈ {N , I}, where Ui = (Ui1, ..., UiJ) is individual i’s private

valuation, whose pdf is f(u|g, δ). Ui doesn’t have to follow a specific distribution and

24



Table J.1: Top 10 Israeli cities selected based on the restricted minimax criterion

α = 0.001 α = 0.9

Post. mean imm. Post. mean
natives

Post. mean imm. Post. mean
natives

Loc. name (1) (2) Loc. name (3) (4)

Bat Yam 144.9 162.9 Bat Yam 144.9 162.9
Mevasseret Ziyyon 546.5 178.1 Haifa 222.1 289.4
Betar Illit 331.0 193.4 Rishon Leziyyon 267.4 260.7
Kokhav Ya’ir 501.0 224.1 Holon 288.4 292.2
Efrata 431.9 232.3 Karmi’el 214.6 307.4
Shomron 511.9 239.1 Qiryat Gat 298.7 257.1
Qiryat Eqron 556.9 288.8 Betar Illit 331.0 193.4
Bene Ayish 376.2 377.7 Ashdod 66.4 413.2
Qarne Shomeron 294.1 395.5 Efrata 431.9 232.3
Qiryat Ye’arim 310.3 600.1 Qiryat Motzkin 463.5 254.1

Note: This table reports the list of 10 selected cities by the restricted minimax (N/I/city) decision-maker depicted in Section J.
Columns 1-2 report the posterior mean regret of the selected 10 cities when a = 0.01, and columns 3-4 report the posterior mean
regret of the selected 10 cities when a = 0.9.

for j ̸= k, Uij and Uik are allowed to be dependent. The share of families of group

g ∈ {I,N} who choose to move to location j given δ is:

πjg(δ) =

∫
1{Uj − (agj + bijδj) ≥ Uk − (agk + bikδk)∀k}f(u|g, δ)du,

where agj is set to match the status-quo sorting probabilities when δj = 0 for all j,

represented at δ = 0: π̃δ
jg0 ≡ πjg(0) =

∫
1{Uj − agj ≥ Uk − agk∀k}f(u|g, 0)du. To see

the equivalence between this model and the one in Section 9 let b̄gj and bgj be the

lower- and upper-bounds of bij that satisfy: (1) If π̃
δ
jg0 − a > 0, then bgj must solve:

a = π̃δ
jg0 −

∫
1{Uj − (agj + bgjδj) ≥ Uk − (agk + bglδk) for all k}f(u|g, δ)du,

while if π̃δ
jg0 − a ≤ 0, then bgj → −∞. (2) If π̃δ

jg0 + a < 1, b̄gj solves

a =

∫
1{Uj − (agj + b̄gjδj) ≥ Uk − (agk + b̄glδk)∀k}f(u|g, δ)du− π̃δ

jg0, and b̄gj → ∞ otherwise.
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