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Abstract

This paper studies the prevalence and evolution of gender bias in the United

States Patent and Trademark Office (USPTO) examination process and assesses the

consequences of this bias on economic outcomes. Applying Natural Language Processing

tools to patent applications submitted between 2001 and 2013, I estimate gender gaps

conditional on the content of the patent application, comparing allowance probabilities

between teams of inventors with different gender compositions but similar inventions.

Despite a substantial raw gender gap in the probability of initial allowance, I document

no average difference in initial allowance rates between mixed-gender and all-male

teams. This average masks important heterogeneity. Allowance rates for mixed-

gender teams were significantly lower between 2001 and 2003, a gap that shrank to

zero by 2005. Gender gaps also vary substantially across examiners, with bias against

mixed-gender patents concentrated among senior examiners and bias in favor of women

concentrated among young examiners. A mean zero gender gap with positive variance

generates economic loss due to the misallocation of granting rights. Building on the

methodology of Kogan et al. (2017), I estimate that these biases depressed the value

of approved patents by $12.6 million per year.
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1 Introduction

Over 200 years have passed since Hannah Wilkinson Slater became the first woman to be
granted a patent in the United States.1 Although female participation rates in the education
system and labor market have risen dramatically since then, women nonetheless remain
grossly underrepresented in the patenting system, accounting for only 12% of the inventors
in 2016 (Lissoni et al., 2018). While various explanations have been offered for this persistent
gender gap, including differences in occupation choice (Hunt et al., 2013), rejection aversion
(Aneja et al., 2024), and lack of exposure to innovation (Bell et al., 2019), there is a concern
that gender bias causes patent examiners to over- or under-value contributions based on
inventors’ gender. Such a concern is particularly pronounced in the US patenting systems in
which examiners’ discretion has been documented to be consequential in allowance decisions
(Frakes and Wasserman, 2017; Sampat and Williams, 2019). Bias in patenting raises not
only equity but also efficiency concerns, as misallocation of patent rights can have lasting
economic effects, influencing growth (Jones, 2011; Bloom et al., 2013; Akcigit et al., 2017;
Acemoglu et al., 2018), inventors’ careers (Toivanen and Vaananen, 2012; Kline et al., 2019),
and firm profits (Hall et al., 2005; Galasso and Schankerman, 2015; Kogan et al., 2017).

Previous attempts to estimate the importance of gender bias in the patent system suffer
from several fundamental concerns. Jensen et al. (2018) have documented a gender gap in
the likelihood a patent is granted. However, a gender gap in granting doesn’t necessarily
imply gender bias. The patent-granting process comprises multiple rounds of revisions before
a patent is actually granted, and Aneja et al. (2024) show that women are less likely to
persist and resubmit their patent applications after early rejections. Efforts to investigate
gender differences in the first-round examination decisions have estimated a smaller and
insignificant gender gap. Even so, all previous estimates comparing allowance rates by
gender are susceptible to omitted variable bias, as gender gaps could result from a correlation
between the gender composition of the inventors and the unobserved patent quality.

In this paper, I address this concern by exploiting state-of-the-art tools from the Natural
Language Processing (NLP) literature to control for the patent application text and content.
I analyze whether the gender composition of the inventors, implied by their name on the
patent application, affects the outcome of the application process conditional on rich measures
of patent quality and content, as captured by the text of the application. I estimate the
overall and examiner-level gender disparities in initial allowance decisions and study the
characteristics of biased examiners between the years 2001 and 2014.

1Her patent was registered in 1793 and introduced a new method of producing cotton-sewing thread.
Interestingly, the inventor’s name on the patent was Mrs. Samuel Slater, her husband’s name (Khan, 1996;
USPTO, 1888).
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I encode the patent text by transforming it into text-embeddings, a moderate-size vector
of text features generated by a pre-trained BERT (Devlin et al., 2018) neural network model
that was trained exclusively on nearly the entire corpus of patents by Google (Srebrovic and
Yonamine, 2020). I show that the patent text embeddings are highly predictive of examiner
decisions, citations, and the stock market return of patent assignees, suggesting the text
embeddings account for the patent quality. Moreover, I provide evidence that the assignment
of applications to examiners is as good as random conditional on the text embeddings by
showing that conditional on the text embeddings, the gender mix of the inventors and other
non-text characteristics are not systematically correlated with examiner characteristics.

My target parameter – the gender gap in allowance conditional on the text – captures
two distinct but related forms of disparities: disparate treatment and disparate impact.
Disparate treatment arises when the decisions of the examiners are directly a function of the
gender composition of the team of inventors, such as in models of taste-based discrimination
(Becker, 1957), inaccurate stereotypes (Bordalo et al., 2016), or statistical discrimination
(Aigner and Cain, 1977). Disparate impact results from decisions that are based on other
non-text characteristics that are not the gender of the inventors but are correlated with it.
This type of disparity was formalized in Bohren et al. (2022) and studied in the legal system
in Arnold et al. (2022). In either case, the bias I measure is policy-relevant as the USPTO
examiners are legally required to rely primarily on the patent application’s text and claims.

I document three novel facts about the distribution of gender bias in the first round of the
patent application process. First, while the raw gender gap in initial allowance is substantial,
after controlling for the text, the average allowance gap entirely disappears. This result is
robust to different gender definitions, including thousands of art units,2 year, and class fixed
effects, and alternative matching estimates. Second, I document the evolution of the gender
gaps in initial allowance from 2001 to 2013. Between 2001 and 2003, patents with mixed-
gender authors were 0.8 percentage points less likely to be initially allowed compared to
all-male or gender-unknown patents. However, that gap has decreased over time, and since
2005, it has converged to zero. This finding mirrors the recent evidence from academia
(Card et al., 2021, 2022) and labor markets (Schaerer et al., 2023). Lastly, I show that,
although the mean allowance gap is zero, there is substantial variation in gender gaps across
examiners. After adjusting for sampling error using the leave-out estimator of Kline et al.
(2020), the standard deviation of gender bias across examiners in initial allowance is 2.3
percentage points, more than 25 percent of the mean initial allowance rate for no-female
teams. Similar two-sided gender discrimination has also been found in audit experiments in
the labor market (Arceo-Gomez and Campos-Vazquez, 2014; Kline and Walters, 2021; Kline

2an art unit is an examination unit, a group of examiners specializing in a particular technology
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et al., 2022).
Examiner discretion plays a significant role in allowance decisions even beyond the gender

of the inventors. After controlling for the patent text embeddings, I document substantial
variation in examiner leniency, with a standard deviation of 110% of the average initial
allowance rate. While previous literature has emphasized the importance of discretion in
the examination process (Lemley and Sampat, 2012; Frakes and Wasserman, 2017; Sampat
and Williams, 2019; Farre-Mensa et al., 2020), to my knowledge, this is the first estimate
of examiner leniency that accounts for sampling error and conditions on the content of the
patent.

Examiners’ cohort explain roughly 25% of the variation in gender bias, with senior
examiners more likely to exhibit bias toward mixed-gender patents and younger examiners
more likely to be biased against all-male patents. Time effects do not explain this result,
ruling out the possibility that examiners changed their behavior over time. The art unit
of examiners explains approximately 25% of the variation in gender bias, suggesting a wide
across-field variation.

The importance of discretion and bias varies by examiner characteristics and over time.
The standard deviation of the gender bias of male examiners is twice the size of the standard
deviation of female examiners, suggesting that male examiners pose a higher risk in the
system. Similarly, younger cohorts of examiners who joined the USPTO in later years
have lower levels of variability in discretion and bias. Finally, combining these findings
with the evidence that the mean preferences of younger examiners differ from those of senior
examiners, I conclude that, over time, the risk of encountering an abnormally biased examiner
has increased. This result suggests an increase in polarization within the community of
examiners.

Exploring the legal ground behind initial rejections reveals that although most rejections
are based on a lack of novelty or obviousness, the gender gaps in initial allowance are
disproportionally correlated with technical rejections based on writing. Previous research
argues that such rejections are simpler and less time-consuming as they do not require a
timely prior-art search (Frakes and Wasserman, 2017).

Much of the discrimination literature focuses primarily on average gaps, which only
partially map to fairness and inefficiencies. First, even though there is no ex-ante bias on
average, heterogeneity in bias undermines ex-post horizontal equity. Second, an exclusive
focus on mean bias overlooks the detrimental ramifications of misallocation, which may
manifest even if the mean bias is zero. Utilizing Kogan et al. (2017)’s stock market return
model for patents, I estimate the effect of bias on the stock market returns of publicly
traded firms. Since the stock market return is observed only for granted patents, I estimate
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a selection model (Heckman, 1979), exploiting the examiners as instruments, conditional on
the patent content. My analysis estimates the annual cost of having a positive variance in
gender bias among initially allowed patent applications assigned to publicly traded firms to
be approximately $1.67 million. Extrapolating this cost to granted applications, the results
suggest that gender bias generates a loss of 12.6 million dollars per year. Finally, extending
this cost to any form of examiner-level discretion reveals a cost of 76.6 million dollars per
year, which is 31% of the value of the median public US firm in 2013.

This paper contributes to several strands of the literature. First, this paper is the
first systematic evaluation of gender bias in the USPTO patent application process that
accommodates major identification concerns. Closely related work by Coluccia et al. (2023)
provides evidence for racial discrimination in patenting during the 20th century in the US,
and Li and Liu (2023); Hochberg et al. (2023) estimates gender gaps in citations. More
broadly, this paper contributes to the literature on the lack of recognition and under-
representation of female scientists (Rossiter, 1993; Silver et al., 2018; Ellinas et al., 2019;
Koffi, 2021; Sarsons et al., 2021), and aligns with literature in economics studying discrimination
and how it varies across gate-keepers (Abrams et al., 2012; Arnold et al., 2018; Dobbie et al.,
2022; Feigenberg and Miller, 2022; Kline et al., 2022). Beyond documenting gender bias,
this paper is among the studies that evaluate the economic effects of discrimination (Becker,
1957; Glover et al., 2017), and the consequences of inefficiencies in the innovation process
(Bryan and Williams, 2021; Clemens and Rogers, 2023; Matcham and Schankerman, 2023).

Methodologically, this paper exploits recent advancements in the NLP literature and
builds a matching estimator that conditions on the patent application text (for a review on
the use of text in economics, see Gentzkow et al., 2019).3 This paper provides a concrete
and easy-to-implement method to account for the patent application content exploiting
modern NLP methods. I demonstrate that the text embeddings can balance observables
of patent applications across inventing teams with different gender mixes, suggesting that
these comparisons are unconfounded. Therefore, the approach taken in this paper could
serve as a useful framework to study other questions in both the patenting domain and in
other settings where evaluations are mandated to depend on textual content.

The rest of the paper is organized as follows. Section 2 provides the institutional
background, and Section 3 describes how I use the text data for analysis, Section 5 describes
the patent data and the text embedding features, and Section 4 outlines the conceptual

3Examples for matching on text in social science include: Roberts et al. (2020) who model the text with
latent Dirichlet allocation (LDA) model, Mozer et al. (2020) who match the text using distance metrics on
the bag-of-words representation, and Zeng et al. (2022) which use bag-of-words methods to extract covariates
from medical records to study the effect of different treatments on cancer. Keith et al. (2020) provides a
review of using textual data to adjust for confounding from the computer science perspective.
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framework and identification assumptions for the overall gender bias estimate. Section 6
reports the average gender bias overall and by years and examiners’ years of experience.
Section 7 discussed the identification assumptions for the examiner-level gender bias. Section
7.2 documents the variance components of gender bias and its variation across groups.
Section 9 provides robustness tests and mechanisms. Section 10 estimates the impacts of
bias on market return, and Section 11 concludes.

2 Institutional Background

2.1 Patent Examination Process

A patent application is a form that describes an invention that is being requested for a grant
at the patent office. It includes a title, written description, abstract, at least one claim, and,
if necessary, some drawings, and is usually written by patent attorneys using legal language.
Once the USPTO receives the application, it undergoes a pre-examination review to ensure
that all necessary forms have been completed and all fees have been paid. The application
claims are then classified and forwarded to the relevant USPTO technology center and art
unit for examination.4

Within an art unit, a supervisory examiner (SPE) assigns the application to a specific
examiner, who oversees the application for the remainder of its existence. Previous research
argues that, at least in some art units, applications are assigned to examiners randomly
(Frakes and Wasserman, 2017; Sampat and Williams, 2019). However, other evidence also
indicates within art unit specialization by class and subclass (Righi and Simcoe, 2019).
Irrespective of whether the assignment is random within art units, all existing evidence
suggests that it is the content of the application that plays a central role in how applications
are assigned to art units and, in some cases, examiners.

The assigned examiner then evaluates the application content for compliance with law
and regulation. She ensures that the patent claims include only a single invention,5 that
the claims clearly define the invention, and that the description adequately describes the
invention. The examiner also conducts a prior art search by looking for related previous
patents or non-patent literature to determine whether the claimed invention is novel and not
obvious. Based on this examination, the examiner may either allow all claims, an event I
refer to as Initial Allowance (IA), or issue an office action indicating a Non-Final Rejection

4Technology Centers are groups of examination units divided by a broad technology. Each examination
unit is called an art unit.

5If multiple inventions appear in the claims, the examiner issues a restriction, and the applicant is then
required to choose claims drawn to a single invention.

6



rejecting or objecting to one or more of the claims made in the application. A typical non-
final rejection office action identifies the specific claims and the grounds on which each of
them is being objected to and/or rejected.

Upon receiving a Non-Final Rejection, the applicant is generally given three months
to respond. The applicant’s response is some combination of arguments and amendments
regarding the claims, usually narrowing their scope. The applicant may also request a
telephone or in person interview with the examiner.6

2.2 The Role of the Patent Application Text

The patent application text has a central role in the application process. Based on the text,
patents are classified into classes and subject matter, which determine the specific technology
centers, art units, and examiners to which they are assigned. Upon assignment, the Patent
Act defines that examiners’ assessments should be based primarily on the information in the
patent applications.

An examiner can deny an invention on several grounds. One is lack of novelty and
obviousness, which requires the examiner to compare the claimed invention with prior
art. Other grounds for denial are missing statutory subject matter, non-usefulness of the
proposed invention, inadequate writing, and failure of the application to satisfy disclosure
requirements, all assessed based on the patent text and its content. All other non-patent-text
information, such as existing prior art, citations from the non-patent literature, and personal
knowledge, are allowed to be used only in conjunction with the patent text.

Although each patent application is required to disclose the inventors in the applications,
the names of the inventors are not expected to be used to assess patentability. At the least,
names cannot serve as reasonable grounds for rejection. Moreover, the role of uncertainty
is also limited in the patent application process. Unlike academic papers, whose content
could change dramatically during the review process, the invention is not allowed to be
changed after a patent application has been submitted. Instead, a patent application should
represent a final output. Should inventors seek to change their invention, they must file a new
application with a new set of claims. During an application process, amendments are allowed
only to the claims by restricting their scope or adding to prior art citations. Examiners, of
course, can still face uncertainty or have varying skills in identifying high-quality patents.
However, any behavior that generates gender disparities conditional on the patent content
would indicate a deviation from the stated mandate.

6An interview with the applicant or the applicant’s attorney for the discussion of the patentability of
a pending application will not occur before the first office action unless the application is a continuing or
substitute application.
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The unique setting of the patent examination process and the important role played by
the patent application text lead to the following question: can we match patent applications
based on their text? In the following sections, I provide a framework to do so and further
evidence for its validity.

3 Text as Data

“You shall know a word by the company it keeps!”

- John Firth, “A synopsis of linguistic theory, 1930-1955”, 1962.

Text is a form of unstructured, high-dimensional data that encodes rich information,
which inspired decades of research on numerical text representation. This paper adopts the
state-of-the-art NLP approach of representing text as text embeddings—dense real-valued
vectors of a finite dimension dwelling in some predefined vector space. Each dimension of
the vector captures a specific feature of the text, and each text is represented by a point in
that vector space such that words with the same meaning are closer to each other.

This approach to text representation builds on the Distributional Hypothesis from the
field of distributional semantics in linguistics, an idea first popularized by Firth (1957). It
stems from the semantic theory of language usage, which posits that lexical items (words,
sentences, or paragraphs) used in similar contexts tend to convey similar meanings. This
representation has achieved unprecedented success across various Artificial Intelligence (AI)
tasks and is regarded as one of the key breakthroughs in recent NLP research.

In this section, I describe how I use the neural network language model BERT (Devlin
et al., 2018) to convert the patent application text into embeddings, producing p continuous
covariates xi1, ..., xip, where p is of moderate size.

3.1 Contextualized Word Embeddings Using BERT Model

The Bidirectional Encoder Representations from Transformers (BERT) model (Devlin et al.,
2018) is a deep neural network trained to perform two unsupervised tasks simultaneously.
The first task involves predicting a randomly selected percentage of words in a paragraph,
while the second task determines whether one sentence follows another in a given pair.
This section briefly outlines the main structure of the BERT model and how it generates
embeddings. For more detailed information, refer to the original paper (Devlin et al., 2018).

The BERT model is a neural network model, a statistical model inspired by neuroscience,
which allows for high levels of dependencies and nonlinearities between inputs. Illustrated
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in appendix Figure A.1, any neural network model can be represented as a graph comprising
input, hidden, and output layers. Each node in the graph is called a neuron, and each
edge represents an estimated parameter such that each neuron is a function of the linear
combination of the neurons from the previous layer. In the BERT model, the input layer
is a piece of text, represented by a dummy for each word, and each word dummy is then
mapped to several hidden layers of a moderate dimension. Between layers, different words
are connected using a special attention layer architecture (Vaswani et al., 2017). Each
model’s hidden layer is considered to be an embedding vector, representing a word in a lower
dimensional space.

To prepare the input of the BERT model, each word in the input text is broken into
subwords and tokenized, and a special token, termed the [CLS] token, is added to the
beginning of the text. Then, in the last layer, the model predicts the two tasks described
above: predicting the masked word using its embedding representation and predicting the
next sentence using the last layer embedding of the special [CLS] token.

The outputs of the model are the estimated parameters of each neural network layer. As
such, there are several possible word embeddings representations. Devlin et al. (2018) suggest
using BERT embeddings in various ways, including the last, second-to-last, or concatenating
the last four layers. Moreover, to represent a document comprised of many paragraphs, it is
customized to use either the average word embeddings in the paragraph or the embeddings
of the first special [CLS] token as an aggregate representation of the entire paragraph. In
this work, I use the [CLS] token as a text representation. In Section 5.2, I compare different
combinations of embedding layers and proceed with those that attain the highest predictive
power subject to my machine memory constraint.

To generate the word embeddings, I use a pretrained large BERT model that was trained
exclusively on over 100 million patents by Google (Srebrovic and Yonamine, 2020) and on
all the parts of the text, including the abstract, description, and claims. The model has 24
hidden layers, each embedding vector is of a size of 1024, and each input text could have up
to 512 tokens. Since this language model was trained exclusively on patents, the estimated
parameters represent the language structure, word distribution, and unique semantics of the
specific domain of patents.

BERT embeddings, like those from other deep neural network NLP models, are renowned
for their high quality text representation. In Section 5.2, I demonstrate that also in this
context, the patent application text embeddings have high predictive power for the content
of patents, allowance probability, and examiner decisions. Then I explain how we can be use
them as covariates to answer causal questions.
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4 Conceptual Framework - the Overall Gender Gap

Each patent application i filed in year ti is characterized by its text Ti and by Fi, the gender
composition of its inventor team. For ease of notation, I refer to Fi as an indicator equal to
one when the team of inventors includes at least one female. In my analysis, I also explore
other fractional versions of Fi, which do not affect the definitions described below. Since,
after a non-final rejection, there are gender differences in persistence and the probability
of resubmitting the patent application (Subramani et al., 2020), I restrict attention to the
examination decision after the first round of the patent application process, denoted by IAi.

Each patent application is assigned to one of J examiners, where the function J ∶
{1, . . . , n} → {1, . . . ,J } indicates the examiner to which application i was assigned, and
I define Zij = 1{J(i) = j}. The goal of each examiner in the examination process is to decide
the patentability of each application by evaluating the patent’s text and assessing its quality.

The content of each patent application text is represented by a numerical vector of a
finite dimension Ci ≡ C(Ti) ∈ Rp. It describes the information encoded in the text that
is relevant for examination decisions, where its vector representation allows it to vary on
multiple, possibly large, number of dimensions.7 As I describe in further detail below, my
empirical analysis will assume that the patent content Ci is captured by the embedding
representation generated by a BERT language model.

Following the instructions in the Patent Act, allowance decisions should be based on the
patent content Ci. In practice, allowance decisions might also be based on other non-text
characteristics, including the patent gender Fi. Thus, I model the decision rule of each
examiner j as a function IAj(c, f, u) of the patent content Ci = c, the gender of the inventors
Fi = f , and all the other non-content non-gender characteristics that affect the final decision,
Uij = u. This representation nests the model in which examiners extract the content of the
patent, Ci, from the text, Ti, imperfectly and might vary by their skill to do so, where the
errors are part of the Uij term.8

With the initial allowance decision rule, the potential first-round examination outcome of
patent application i from assignment to examiner j is IAij ≡ IAj(Ci, Fi, Uij). Consequently,
the following function describes the system-wide initial allowance decision rule at the overall

7The existence of this representation is implied by the literature on distributional semantics described in
Section 3.

8For example, rational examiners who infer the content of the patent from the text, a noisy signal, learn
only a fraction λ ∈ [0, 1] of the content: C̃(Ti) = λC(Ti) where λ is the signal to noise ratio. In that case the
error, C(Ti) − C̃(Ti) will be represented in the error term, Uij .
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USPTO level:

˜IA(Ci, Fi, Ũi) ≡ ˜IA(Ci, Fi, UiJ(i), ZiJ(i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ũi

) = ∑
i

ZiJ(i)IAJ(i)(Ci, Fi, UiJ(i)),

where Ũi encompasses both examiner level non-content related tastes and shocks and the
consequences of the assignment process on eventual allowance decision. Therefore, the
observed initial allowance indicator of application i is IAi = ˜IA(Ci, Fi, Ũi) which is also
the potential initial allowance of application i at the assigned examiner IAiJ(i).

The first parameter of interest is the content-adjusted overall gender gaps, which I define
as:

β = ∫ ω(c)(E[IAi∣Fi = 0,Ci = c] −E[IAi∣Fi = 1,Ci = c])dG(c), (1)

where integrals are taken over the distribution of the patent application content G(c) in the
overall population. The function ω(c) gives the weights defining the estimand of interest.
For example, if ω(c) = 1, then β is the Average Treatment Effect (ATE). If E[IAi∣Fi =
0,Ci = c] −E[IAi∣Fi = 1,Ci = c] does not vary with the patent content Ci = c, then β is the
same regardless of the chosen weights. The parameter β describes the average USPTO-wide
gender gap conditional on the patent application content.

The interest in the content-adjusted gender gap, β is motivated by the legal requirement
that patentability decisions should be based primarily on the content and meaning of the
patent invention. Any systematic variation in allowance among patents with identical content
but different genders of inventors represents deviations from the stated mandate of the Patent
Act. Such deviations could originate from various sources, which I discuss below.

4.1 Sources of Gender Gaps in Initial Allowance

This section outlines the potential sources for gender gap (β ≠ 0) by modeling the reduced
form initial allowance decision in terms of examiners’ preferences and beliefs. To rationalize
the behavior of each examiner, suppose that each patent application is characterized by a
unique latent quality, denoted by qi ∈ Q ⊆ R. The utility of each examiner, vj(d, q, f, ϵ),
depends on her allowance decision d ∈ {0,1}, the patent quality q, and potentially the gender
indicator f ∈ {0,1}, and other features ϵ of either the patent, or the examiner, or both.9

As elaborated next, these other factors could represent other potential biases of examiners,
9Examiner j’s utility may vary over time, as patent content can hold different value depending on its

novelty. I omit the subscript t from the model for simplicity but account for time-varying content effects in
my analysis.
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such as ones based on the race or ethnic makeup of the inventor team (Coluccia et al., 2023),
examiner characteristics, limitations, such as time constraints (Frakes and Wasserman, 2017),
and unexpected shocks.

Since patent quality is unobserved, the examiner forms beliefs about its distribution
based on the observed signals. These signals include the patent application text, from which
examiners extract its content, Ci = c, and additional non-text characteristics, including the
gender of the inventors Fi = f , and other factors, Uij = u, that influence the allowance
decision.10

Conditional on these signals, examiners hold beliefs about the conditional distribution of
quality given Fi = f and Uij = u, represented by F̃f,u(q). Assuming rational behavior, each
examiner forms decisions based on the respective posterior distribution F̃f,u(q∣c) of patent
quality after observing the application content c, alongside the other characteristics f and
u. The initial allowance decision is then chosen to maximize the examiner’s expected utility,
integrated over this posterior distribution:

IAj(c, f, u) = arg max
d∈{0,1}∫q vj(d, q, f, ϵ) dF̃f,u(q∣c).

Note that this representation allows the beliefs of the examiner regarding the distribution of
quality to diverge from the actual distribution of quality Ff,u(q).

Disparate treatment: A decision rule that directly depends on the gender of an inventor,
be it due to preferences or beliefs, constitutes a form of disparate treatment. Such a decision
rule implies that there exists c ∈ Rp, and u ∈ R, for which IAj(c,1, u) ≠ IAj(c,0, u). The
canonical disparate treatment model is Becker (1957)’s taste-based discrimination. In this
model, the utility function of examiners vj(d, q, f, u) varies directly with the gender of the
inventors. Another form of bias is statistical discrimination, emerging when the beliefs of the
examiner are shaped by the actual distribution of quality Ff,u(q), and when this distribution
varies with the gender of the inventors (Aigner and Cain, 1977). Finally, bias may also arise
from inaccurate beliefs regarding the prior distribution of quality that vary systematically
with the gender of the inventor team F̃f,u(q) ≠ Ff,u(q) (Bordalo et al., 2016).

10Both U and ϵ are observed by the examiner during the evaluation of the patens. ϵ represents all the
non-patent-quality characteristics that affect examiners’ decisions beyond the gender mix of the inventors,
and U represents all the non-patent-text characteristics that affect examiners’ decisions beyond the gender of
the inventors. Both include, for example, race discrimination, institutional constraints, or temporal shocks.
However, tastes related to the patent text, topics, and styles would not be considered in U , although they
are part of what ϵ captures.
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Disparate impact: Gender gaps could arise additionally due to a relationship between
the other factors (Uij) that affect the allowance decision of examiners that are correlated
with the gender of the inventors. For example, if examiners directly discriminate based
on ethnicity, and ethnicity is associated with the gender mix of the inventors, this would
result in a non-zero value of β.11 Gender gaps at the system-wide USPTO level could also
result from a systematic assignment of patents of a certain gender to less lenient examiners
(correlation with Zij).

In Section 7, I provide supporting evidence that the assignment of applications to examiners
process does not drive gender gaps conditional on the patent application content. Although
Section 9.2 shows that the paper’s findings are robust to controlling a few other non-
textual characteristics like ethnicity and country of origin, it is important to note that,
at the examiner level, it is not feasible to distinctly separate the gaps stemming from
disparate impact and disparate treatment since the gender of inventors is not randomly
assigned. Nevertheless, non-zero estimates of content-adjusted gender gaps are consistent
with behavior that violates the stated examination rules since they are based on nontext
characteristics.

Another example of disparate impact in my setting is disparities arising from examiners’
preferences for different writing styles, as explored in Levitskaya et al. (2022). Since the
mapping from text to content is not one-to-one—identical inventions can be described
with different word combinations—disparities may emerge from such stylistic preferences.
Assessing the extent to which BERT text embeddings capture these factors is an interesting
direction for future research.

4.2 Identification

Since we cannot directly control for the patent text, I measure differences in allowance
probability conditional on the BERT text embedding vector, denoted by Xi ≡ Xi(T ) ∈ Rk.
This section discusses the assumption regarding the BERT embeddings vector that is required
for the identification of β.12

Assumption A1. (BERT embeddings). The BERT embedding vector, Xi, is sufficient for
11Disparate impacts have been recently studied in the context of the US judicial system by Arnold et al.

(2022) and conceptualized in Bohren et al. (2022).
12Throughout the analysis, I assume that the BERT embeddings are fixed and measured with no error.

The extent to which measurement error in the representation of unstructured data biases the results is an
area of active research (Sellam et al., 2021; Battaglia et al., 2024).
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the patent content Ci.

E[Yi∣Ci,Xi] = E[Yi∣Xi]

for any Yi ∈ {IAi, Fi}

Assumption A1 requires the BERT embeddings Xi to sufficiently cover all the information
in Ci. While Ci can be thought of as the minimal text representation that encompasses
the patent content and that is essential for the decisions examiners make, this assumption
requires that the least, the BERT embeddings representation is a finer representation of
the text than the content Ci. This is analogous to controlling for a fully saturated set of
controls in a stratified experiment rather than the coarsest balancing score, the propensity
score. Notably, this assumption does not require that the BERT embeddings capture all the
possible information in the text. It requires it only to represent all the essential elements of
the examination process, such as what it claims, how it functions, and what is new about it.
Moreover, since examiners are expected to determine whether the description and the claims
are written clearly, the embedding vector should also capture the language and writing
clarity. While I cannot test this assumption directly, I provide evidence that the patent
embeddings are strongly predictive of examiners’ decisions, patent quality proxies, and the
gender mix of the parent inventors.

Under Assumption A1, the overall gender bias (1) is non-parametrically identified. To
estimate this parameter from finite data, additional parametric assumptions are required.
In the analysis that follows, my preferred estimate is the Ordinary Least Square (OLS)
coefficient of a female indicator, controlling linearly for the text representation, and I show
in Section 6 that the results are robust to other matching techniques.13

5 Data

The primary data source is the USPTO Patent Examination Research Dataset (Graham
et al., 2015) which includes the universe of all public patent applications available online in
the Public Patent Application Information Retrieval system (Public PAIR) (Miller, 2020).

13The OLS coefficent on a treatment indicator from a model with controls is a weighted average of
conditional average treatment effects. Angrist (1995) demonstrated it first in a model with a single binary
control, and Angrist and Krueger (1999) and Goldsmith-Pinkham et al. (2022) extend this result to a general
set of control variables.
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I restrict the sample to utility14 patent applications filed after November 29th, 200015 and
before January 1st, 2014. For every patent application, the Public PAIR data includes
information on inventors’ first and last names and additional variables such as country,
application number, publication number, the grant date if granted, and examiners, art unit,
and technological classes and sub-classes identifiers. To avoid detecting differential behavior
to non-US inventors, I include only patent applications submitted by US inventors.

I merge this dataset with several other datasets: 1) The USPTO Patents View data, which
includes detailed information on both granted patents and patent applications. 2) The Patent
Claims Research Dataset (Marco et al., 2019) from which I obtain detailed information on the
number of claims per patent, claim text, and the change in the claims between application
to granting for granted patents; 3) “Google Patents Research Data” from which I pull the
abstract and description text of each patent application; 4) Examiners’ roster, pay scale, and
education levels from Frakes and Wasserman (2017) Freedom of Information Act request;
5) Kogan et al. (2017) patent market value data, which run event studies to estimate the
excess stock market return realized on the grant date of patents assigned to publicly traded
firms; 6) USPTO Office Action Rejection, which documents the grounds of rejections for all
rejected patent applications from 2008 to 2017. For additional information see Appendix
Section B.

Applicants and Examiner Characteristics: I assume examiners infer inventors’ gender
from their names. Therefore, I classify the gender of each inventor based on distribution of
the first name by gender from U.S. Social Security Administration (SSA) data, under the
assumption that U.S.-based examiners recognize common U.S. names. This method classifies
75% of names in my sample, with unlisted SSA names treated as foreign and of unknown
gender.

To infer examiners’ true gender, I take an improved approach that maximizes name
coverage, including foreign-sounding names, as my ultimate goal is to infer their true, rather
than implied, gender. In addition to U.S. SSA data, I incorporate gender information from
the UK Intellectual Property Office, the World Intellectual Property Organization (WIPO),
the gender-guesser Python package, and Genderize.io. This comprehensive approach identifies
the gender of 85% of examiners’ names.

I measure each examiner’s years of experience and education level based on the FOIA
roster tables provided by Frakes and Wasserman (2017), which date back to 1992 and

14Utility patents are granted for the “invention of a new and useful process, machine, manufacture, or
composition of matter” (USPTO 2010).

15Since the American Inventors Protection Act of 1999, almost all the USPTO patent applications filed
after November 29th, 2000 were published online, regardless of whether they are granted or not.
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end in 2012. For examiners who joined before 1992 or after 2012, I supplement this data
with information from the first office action and validate the approach using administrative
records. See Appendix Section B for more details.

5.1 Descriptive Statistics

Table 1 provides summary statistics of the patent applications satisfying the sample restrictions
described above. The sample includes over 1.2 million patent applications; only 16% of them
include at least one female inventor, and only 11% have a female inventor as the first or
second author in the list inventors.16 The average inventor team has 2.5 inventors, whereas
teams with at least one female inventor are larger. 35% of the patent applications are of sole
inventors, most of whom are male or unknown.

Table 1: Descriptive statistics of patent applications

Full sample All male or unk At least 1 female Female ranked 1st or 2nd
(1) (2) (3) (4)

# of observations 1,220,831 1,034,932 185,899 128,609

Team size 2.478 2.277 3.595 2.952

Proportion female 0.068 0.000 0.444 0.532

Sole inventor 0.351 0.391 0.129 0.187

Sole female inventor 0.020 0.000 0.129 0.187

Initial allowance (IA) 0.083 0.086 0.066 0.063

Ever granted 0.648 0.658 0.593 0.567

Note: This table presents the descriptive statistics of the US patent applications filed between the years 2001-2013. Column
1 presents the counts and means of the full sample, column 2 of the no female applications, column 3 of the set of patent
applications with at least one female author, and column 4 for the set of patent applications with at least one female ranked
first or second in the application list of inventors.

An initial allowance of a patent application is a rare event: only 8.3% of the patent
applications are allowed in the first round of examination, while 64.6% of the patent applications
are eventually granted. Additionally, the raw gender gap in initial allowance and granting
is substantial, as seen in the last two rows of Table 1. Patent applications with at least
one female inventor are almost two percentage points less likely to find their patent initially
allowed (23% less compared to all male or unknown patent applications) and 6.1 percentage
points less likely to eventually have their patents granted (10% less compared to all male of
unknown grant rate).

16The rank of each inventor in the list of inventors doesn’t necessarily indicate the contribution to the
invention. I use this measure to proxy the visibility of females in the team of inventors.
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Table 2: Examiners’ descriptive statistics

By examiner gender

All Female Male Unknwon
(1) (2) (3) (4)

# of examiners 8519 2045 5107 1367

By start-year
< 1995 0.203 0.201 0.211 0.176

1996-2001 0.314 0.330 0.304 0.326

> 2001 0.483 0.469 0.485 0.498

Initial allowance rates
Mean 0.067 0.053 0.072 0.068

10th percentile 0.000 0.000 0.000 0.000

90th percentile 0.176 0.142 0.190 0.175

Note: This table presents the descriptive statistics of the 8,550 examiners
in my sample, stratified by gender and years of experience.

Table 2 reports the descriptive statistics of patent examiners. There are 8,519 examiners
in the sample: 2,045 were classified as female, 5,107 as male, and 1,367 could not be classified
by gender based on their name. Twenty percent of the examiners joined the USPTO before
1995, 31% joined between 1996 and 2001, and the rest joined after 2001, with no differential
trend by examiner gender. Lastly, examiners vary substantially in their propensity to initially
allow patents, a phenomenon I measure formally in Section 8.1. The mean examiner-level
initial allowance rate is 6.7 percentage points, with male examiners having a 1.9 percentage-
point higher allowance probability. Additionally, there is substantial heterogeneity even
within gender, with examiners at the 90th percentile being three times more likely to initially
allow patents than the mean.

5.2 Selection and Visualization of the Patent Text Embeddings

The BERT model has several layers, each potentially serving as text embeddings. To choose
the list of embeddings, I adhere to the following protocol: For every part of the patent
application text, i.e., description and claims, I generate a unique embedding vector using the
[CLS] token. Since BERT inputs are limited to 512 tokens, I split the text into paragraphs
and compute the [CLS] embeddings for each, averaging them to represent the entire text.
Then, following the recommendations in Devlin et al. (2018), I generate the embeddings
vector for every part of the text using the last, second-to-last, and third-to-last layers. This
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procedure yields (3×2) six possible embedding vectors, each with a total of 1,023 features.17

The preferred set of embeddings is selected to achieve the largest improvement in adjusted
R2 when predicting Initial Allowance (IA) and any female (F) in linear regression, subject
to my machine memory constraint.18 These adjusted R2’s are presented in subfigure 1a,19

where darker circles indicate that more embedding vectors were included. To compare with
previous literature, the “X” point displays the adjusted R2 values obtained by regressing IA
and any female on the set of art-unit-year and class fixed-effects, which are typically used to
control for confounding (e.g., Jensen et al., 2018; Choi et al., 2019).

Subfigure 1a shows that all the possible combinations of embedding vectors dominate
the art-unit-year and class fixed effects in their predictive power of mixed-gender teams.
In addition, the set of embedding vectors that include at least two vectors is more likely
to dominate the fixed effects in predicting IA. This result is striking since the fixed-effects
control for more than 8,000 covariates, while the sets of two embeddings vectors comprised
only 2,046 covariates. Additionally, it seems that the improvement in the predictive power
is limited beyond the combination of two embeddings, one from each part of the text,
description, and claims. Therefore, as my preferred set of embeddings, I use the second layer
of the claims and the description text. To further explore the superiority of embeddings on
the art-unit-year fixed effect, Subfigures 1b and 1c presents the partial adjusted R2 within
art-unit-year and class fixed effects and examiner fixed effect.20 These figures emphasize
that the embedding vector introduces new information beyond the fine text classification to
classes and sub-classes.

Describing embeddings: I conduct two exercises to describe the embedding vector. First,
I apply the Uniform Manifold Approximation and Projection (UMAP) algorithm (McInnes
et al., 2018) to reduce the vector’s dimensionality and present the results in Figure 2. This
figure presents the 2-dimensional UMAP reduction on a random sample of 50% of the patent
applications, with the differing colors representing different technology centers.

This figure communicates two pieces of information. First, although the embeddings were
not directly trained to predict theology centers and fields, they are nonetheless able to predict

17Each original embedding vector has 1024 features mapped into a probability space and, therefore, sum
to one. Hence, one of the features is excluded to avoid multicollinearity.

18The analysis in this paper runs on a high-performance computing cluster with 768 GB of memory.
19For a detailed description of the adjusted R2 values of each combination of embeddings vector see

appendix Table A.1
20Partial R2 measures the proportion of variation explained by the embeddings in a model with both fixed

effects and embeddings that cannot be explained by the fixed effects alone. It is measured as R2
partial =

SSE(F E)−SSE(Xi,F E)
SSE(F E)

×
N−KF E

N−KF E−KXi

where SSE(X) is the sum of squared errors for a model that controls
for X.
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Figure 1: The predictive power of the BERT embeddings for initial allowance and gender
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Note: This Figure plots the adjusted R2 from regressing initial allowance (the horizontal axis) and mixed
gender team indicator (the vertical axis) on different combinations of text embeddings. Subfigure (a) plots
the adjusted R2, and subfigures (b) and (c) plot the partial adjusted R2 within examiners and art-unit-year
and class fixed effects, accordingly. Different dots represent different combinations of the embedding layers
of the patent claims and description. The exact point estimates behind this Figure are available in Appendix
Table A.1. Darker dots represent a model with more embeddings, and the “X” symbol in subfigure (a)
represents the adjusted R2 for a model with art-unit-year and class fixed effects, which includes more than
8,000 fixed effects.

these dimensions. Second, as a continuous index, the embeddings provide richer information
than discrete field indicators. For example, patents from mechanical engineering technology
centers that are similar to those from the computer and communication technology centers
are represented as points that are closer to each other on the graph. In contrast, mechanical
engineering patents that are more similar to patents from the chemical engineering technology
center would appear as points on the other side of the mechanical engineering clutter. Such
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Figure 2: UMAP visualization of the patent text embeddings by technology centers

Note: This Figure plots the Uniform Manifold Approximation and Projection (UMAP) McInnes et al. (2018)
visualization of patent text embeddings and its relationship with patent technology centers. The Figure was
generated using a random sample of 30% of the patent application. Different colors represent different
USPTO technology centers.

similarities provide a nuanced measure of content that mimicks the way we perceive ideas
as a continuous domain.

In the second exercise, I depict the distribution of the explanatory power of text embeddings
in predicting initial allowance across gender groups by running the following regression:

IAi = α + βFi +X ′itγ + ϵi,

where IAi is an indicator that equals one if patent application i was allowed at the first
round of the examination process, Fi is an indicator for the presence of at least one woman
in the team of inventors, and Xit is the embedding vector. Since the same content could have
diffrent value in diffrent years Xit additioonally includes the first 100 UMAP componenets
interacted with a linear time trend. One can think of the embeddings index, X ′itγ̂, as
measuring the patent application quality.

The distribution of the embedding index for mixed-gender applications, as shown in
subfigure 3a, is skewed left, possibly suggesting that the proportion of low-quality mixed-
gender patents exceeds that of all-male patents. However, subfigures 3b-3i, which display the
distribution of the embedding index across technology centers, reveal substantial heterogeneity.
For instance, in the biotechnology center, which has the highest proportion of mixed-gender
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Figure 3: Histogram of embeddings index by gender and technology center
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Note: This Figure plots the distribution of the embedding index separately for patent applications written by
mixed-gender patents by teams with no female inventors and by technology centers. To generate this Figure,
I estimate an OLS regression, separately for every technology center, of the form IAi = α + βFi +X ′itγ + ϵi

where IAi is an indicator for initial allowance, Fi is a mixed gender team indicator, and Xit are my preferred
2,046 text embeddings and a linear interaction of the first 100 UMAP componenets and filing year. The
embedding index is the estimated linear combination X ′itγ̂.

applications, the distributions for mixed-gender and all-male embedding indices are identical.
This pattern could result from a Roy-type model where women choose technologies based on
comparative advantage or from a model with spillovers where women’s productivity improves
with an increased share of women.

This pattern could alternatively be explained by bias related to the patent’s content,
which arises when examiners undervalue feminine topics (Bohren et al., 2018). As I elaborate
in Section 4, In this paper, I focus on analyzing bias conditional on the patent application

21



content. Studying biases in writing styles and topics could make an interesting avenue for
future research beyond the scope of this paper.

5.3 Justifying Identification Assumptions

5.3.1 BERT Embeddings are Predictive of Patent Quality

To assess whether the embedding vector effectively represents the content and quality of the
text, Appendix Figure A.2 displays a split sample binned scatter plot of the OLS predictions
of allowance decisions and the patent quality proxies. Subfigures (a)-(d) depict forecasts
for rejection reasons defined by patent law: obviousness, novelty, writing, and eligibility
violations. The first two require understanding the invention’s uniqueness and contribution,
while the latter two are more technical and require following several guidelines the law
defines. The plots reveal that even the simplest linear model strongly predicts examination
decisions.

BERT embeddings also predict proxies for patent quality. Subfigures (e) and (f) apply
the same method to two widely recognized quality metrics: log number of citations and log
Kogan et al. (2017)’s stock market return. Similarly, the BERT embeddings are found to be
strongly predictive of these variables, where the figure shows that the linear model provides
a good approximation of the relationship between embeddings and the outcomes.

5.3.2 Balance Tests

Assumption A1 requires that the BERT embeddings adequately encode the content of the
patent application. This assumption implies that, conditional on embeddings, gender gaps
in allowance should not be driven by any correlation between the gender of the inventors
and the content of the patent, including its field and class. To test this assumption, I run
an OLS regression of proxies of the patent content, such as technology center indicators and
patent claims statistics, on various variables that describe the gender of the inventors.

Figure 4a displays the relationship between technology centers and the presence of at
least one female inventor in the team, both with and without controlling for text embeddings.
The gray dots present the uncontrolled relationship between mixed-gender patents and each
technology center, while the blue dots show the relationship after accounting for embeddings.
Although mixed-gender applications are not uniformly distributed across technology centers,
text embeddings effectively account for this variation. Appendix Figure A.7 displays the
same analysis using other measures for the femaleness of the patent application.

Similarly, Subfigure 4b shows that BERT embeddings also balance the relationship between
examiner gender claim statistics, such as the average and minimum number of words per
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Figure 4: Balance test of technology centers and claim statistics
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Note: This Figure plots the relationship between technology center indicators (subfigure (a)), claim statistics
(subfigure (b)), and the gender composition of the team of inventors with and without controlling for the
patent application text embeddings. In subfigure (b) the claim statistics include the mean and min number
of words in all the patents claims, and among the dependent claims. The gray dots display the estimates
from an OLS regression with no controls, and the blue dots display the estimates from an OLS regression
controlling linearly for the patent text embeddings and the interaction of the first 100 UMAP components
and linear time-trend. Bars indicate 95% confidence intervals based on robust standard errors.

claim, across all claims and among independent claims.21. Previous research has shown that
these statistics strongly indicate the patent scope (Lanjouw and Schankerman, 2001; Marco
et al., 2019). Lastly, Appendix Figure A.8 tests whether the results are time-sensitive. This
figure replicates the same balance tests separately by five-year time intervals. In line with
previous findings, conditional on the BERT embeddings, the relationship between the gender
composition of the team of inventors and text characteristics is balanced within years.

6 Overall Gender Gap in Initial Allowance

Table 3 investigates the average gender disparities in initial allowance rates. The main
analysis includes estimating an OLS regressions of the form:

IAi = α + βFi + x′iγ + ϵi (2)
21A claim may be written in independent or dependent form. An independent claim is a standalone claim

that contains all the limitations necessary to define an invention. A dependent claim must refer to a claim
previously set forth and must further limit that claim.
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where Fi is a variable characterizing the femaleness of the team of inventors, and xi is a vector
of controls. Column 1 of Table 3 omits xi, column 2 includes art-unit-year and class fixed
effects, the commonly used controls in the literature to account for confounding, column 3
controls for the preferred set of 2,046 embeddings selected in Section 5.2 and an interaction
of the first 100 UMAP components with linear time tred,22 and column 4 includes both the
embeddings and the art-unit-year and class fixed-effects. In panel (i), Fi is an indicator for
having at least one female inventor, in panel (ii), Fi measures the proportion of females,
and in (iii), it is an indicator for having a female ranked first or second in the patent list of
inventors.

Table 3: OLS estimates of the overall mean gender gap in initial allowance

IA IA IA IA
(1) (2) (3) (4)

Any female -0.0200 -0.0035 -0.0010 -0.0007
( 0.0006) ( 0.0006) ( 0.0007) ( 0.0006)

Adj. R2 0.0007 0.0687 0.0682 0.1038
AUC 0.5170 0.7619 0.7500 0.8065

Proportion female -0.0407 -0.0088 -0.0013 -0.0006
( 0.0011) ( 0.0011) ( 0.0012) ( 0.0011)

Adj. R2 0.0008 0.0687 0.0682 0.1038
AUC 0.5175 0.7619 0.7500 0.8065

Female 1st or 2nd -0.0222 -0.0042 -0.0008 -0.0004
( 0.0007) ( 0.0007) ( 0.0007) ( 0.0007)

Adj. R2 0.0006 0.0687 0.0682 0.1038
AUC 0.5137 0.7619 0.7500 0.8065

Art-unit-year class FE No Yes No Yes
Embeddings No No Yes Yes
# of applications 1,220,512 1,220,393 1,220,512 1,220,393
# of examiners 8,519 8,519 8,519 8,519

Note: This table reports the OLS coefficients, adjusted R2, and Area
Under the Curve (AUC) from regressions of an indicator for initial
allowance on the gender of the inventors’ team. The gender of the inventors
is represented by an indicator for having at least one female inventor
(panel (i)), proportion female (panel (ii)), and an indicator for having
female ranked first or second in the application list of inventors (panel
(iii)). Robust standard errors are reported in parentheses.

The raw gender gap in initial allowance between mixed gender teams and no female teams
is substantial and accounts for two percentage points with standard errors of 0.0006 which

22To reduce the dimensionality of the model, I include time-trend interactions only with the first 100 UMAP
components. Appendix Section XX shows that this restriction is robust to controlling for the interaction of
the filing year and all the 2048 embeddings.
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are around 25 percent of the mean no-female initial allowance rates. After controlling for
the fixed effects, the gap falls to 0.35 percentage points (SE = 0.0006). Controlling for the
text embeddings shrinks the gender gap to 0.001, making it statistically insignificant from
zero (SE = 0.0007). Lastly, in a model that includes both fixed effects and embbedings,
has no qualitatively diffrent gedenr gaps, suggesting for robustness to the inclusion of these
controls.

These findings are robust to using alternative measures for the femalness of the patent.
Panels (ii) and (iii) show that using proportion of females or whether a female author is
ranked first or second as Fi provides similar qualitative results of zero bias when controlling
the text embeddings. Appendix Table A.3 presents similar findings for the restricted sample
which compares only female vs. no female patents teams and single author patents, and,
similarly, Appendix Figure A.3 studies the nonlinear relationship between the number of
female inventors and the share of inventors in the team and initial allowance probability.

OLS is one of many types of matching estimators. With treatment effect heterogeneity, it
need not coincide with other reweighting schemes. Table 4 assesses the sensitivity of the OLS
gender gap to other reweighting estimators. Column 1 presents the unexplained component
of an Oaxaca-Blinder (Oaxaca, 1973; Blinder, 1973) analysis by running a model of IA on
embeddings only for the no-female applications and reports the difference between the mean
men allowance rate and the fitted values for the men’s regression on the mean embeddings
vector of mixed gender patents. Kline (2011) shows that this estimator equals the Average
Treatment on the Treated (ATT) if either the propensity score or the outcome equation is
linear in embeddings. Column 1 confirms that the mean gender gap remains zero.23

The mean gender gap remins zero when estimating it by inverse probability weighting.
Columns 2 and 3 report the Augmented Inverse probability Weighting (AIPW) estimate
of the ATE and ATT, estimating the propensity score for Fi with linear regression, and
Column 4 reports the Doubly Robust Machine Learning (DML) (Chernozhukov et al., 2018)
partially linear regression model implemented using the Python package doubleml, where
initial allowance and female indicators are predicted with a neural network (NN) model.
DML estimator will yield more precise estimates without compromising consistency under an
additional assumption of sparsity of the BERT embeddings in the IA and gender equations.
Table 4 suggests that the mean overall gender bias is robust to the reweighting scheme,
where the estimates of the gender gap in all the models are neither statistically significant
from zero nor significantly different from the gender gap estimated by OLS in Table 3.

23In Appendix Figure A.4, we plot the coefficients of embeddings from that separate regressions of IA
on embeddings for the sample of any-female patents against the coefficients from the sample of all-male or
unknown patents. Accordingly, we find that after accounting for excess noise in the estimated coefficients,
the two sets are strongly correlated (ρ = 0.925).
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Table 4: Non-linear models for the mean gender gap in initial allowance

Oaxaca-Blinder AIPW DML

ATT ATE ATT NN
(1) (2) (3) (4)

Any female -0.0019 -0.0012 -0.0009 0.0006
(0.0013) (0.0009) (0.0006) (0.0007)

Note: This table reports the estimates of the overall gender gap in initial
allowance between mixed-gender teams and no female teams conditional on BERT
embeddings. Column 1 reports the fully interacted Oaxaca (1973); Blinder (1973)
ATT estimate by running an OLS regression of initial allowance on embeddings
and the interaction of the first 100 UMAP components and linear time-trend
only in the no-female sample and reporting the difference between the mean
initial allowance rates of men and the fitted values on the no female regression
on the mean embeddings among mixed-gender patents. Columns 2-3 report the
Augmented Inverse Probability Weighting (AIPW) estimates of the ATE and the
ATT, estimating the propensity score with a logit regression. Column (4) reports
the Doubly Robust Machine Learning (DML) (Chernozhukov et al., 2018) partially
linear regression implemented using the Python package doubleml. The model
predicts initial allowance and gender with a neural network (NN) model, where the
network’s number of layers, nodes in each layer, and regularization parameters were
chosen by cross-validation. Robust standard errors are reported in parentheses.

Gender Gaps Over Time

Figure 5 plots the evolusion of gender gap over time suggesting that the gender gap has
changed over time. The blue estimates represent the uncontrolled gender gaps, documenting
substantial raw gaps that fluctuated over time. The purple dots are my preferred estimates
of the gaps after controlling for the text embeddings, and the green dots verify that the
results are robust to the inclusion of art-unit-year and class fixed-effects as controls. The
content-adusted gaps show that while at the beginning of the 2000s, mixed-gender teams
were significantly less likely to find their patent application initially allowed, the system-wide
gender gap converged towards zero over time. Appendix Figure A.5 confirms that the above
pattern is robust to estimating the gender gap separately by year.

These results align with recent findings. Similar time trends have been found in the
selection of Fellows of the Econometrics Society (Card et al., 2021). Conditional on achievements,
the historical gender gap against women economists was substantial and significant, but it
shrunk to zero between 1980 and 2010 and has become positive in recent years. It also mirrors
the trends in gender discrimination in hiring decisions estimated in audit experiments (see
Schaerer et al., 2023, for meta analysis). A dynamic reversal of bias over time could reflect
changes in the composition of examiners or shifts in their behavior (e.g., Bohren et al., 2019),
a key question explored in the analysis that follows.
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Figure 5: Gender gap in initial allowance by filing year

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

Filing year

0.03

0.02

0.01

0.00
Ge

nd
er

 g
ap

 in
 IA

Raw gap
Embeddings only
Embeddings & FEs

Note: This figure plots the estimated gender gap and 95% confidence intervals in initial allowance of patent
applications filed between the years 2001 and 2013 by filing year. Blue dots plot the uncontrolled gender
gap, purple dots plot the gender gap conditional on the BERT embeddings and the interaction of the first
100 UMAP components and linear time-trend. The green dots plot the gender gap conditional on both text
embeddings and art-unit-year and class fixed effects. Confidence intervals based on robust standard errors.

Gender Gaps by Examiner Years of experience

Figure 6 investigates the variation in gender gaps across examiners’ years of experience using
my preferred model that controls for the text embeddings. Each point in the figure presents
the estimated gender gap and confidence interval within bins of approximately three years
experience. Although the average gender gap in the sample is statistically indistinguishable
from zero, Figure 6 shows substantial heterogeneity across examiners by years of experience.
On the one hand, examiners with up to 5 years of experience are significantly more likely
to be biased against men, having a 0.7 to 1 percentage point higher probability of allowing
patent applications with at least one female in the team of inventors. On the other hand,
examiners with more than 12 years of experience are significantly more likely to be biased
against mixed-gender teams.

Variation by years of experience could reflect either an age/experience effect, where
examiners become more biased against women as they gain experience, or a cohort effect,
where different cohorts have different tastes or gender stereotypes. It could also reflect a
nonrandom assignment of patents to examiners. In the next sections, I formally test these
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Figure 6: Gender gap by examiners’ years of experience

Note: This Figure plots the estimated gender gap and 95% confidence intervals in initial allowance of patent
applications filed between 2001 and 2013 by examiners’ years of experience, conditional on the patent text
embeddings. Confidence intervals based on robust standard errors.

hypotheses.

7 Variation Across Examiners

The previous section suggests substantial heterogeneity in gender gaps across examiners.
Building on this, I turn to formally study this heterogeneity and its economic consequences.
To do so, in this section, I begin by describing the new target parameters, identification
assumptions, and statistical framework.

7.1 Parameter of Intrest and Identification

To study heterogeneity across examiners, my second parameter of interest is the examiner-
level content-adjusted initial allowance gap between applications submitted by male and
female teams:

βj = ∫ ω(c)(E[IAij ∣Fi = 0,Ci = c] −E[IAij ∣Fi = 1,Ci = c]])dG(c), (3)
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where, similar to Equation (1), integrals are taken over the distribution of the patent
application content G(c) in the overall population. βj represents the tendency of examiner
j’s decision to vary with the gender of the inventors.

The assignment process of applications to examiners depicted in section 2 suggests
that the patent content is the main instrument through which applications are assigned
to examiners. Therefore, the second identification assumption exploits this phenomenon.

Assumption A2. (Conditional Independence)

(Uij, Fi) ⊥ Zij ∣Ci

This assumption requires that conditional on the patent application content, there is
no systematic relationship between the assignment of applications to examiners and non-
text features that affect decisions, including the gender of the inventors. It does not require
random assignment of examiners conditional on the text. This assumption requires that after
controlling for the content of the patent application, all the other aspects that influence the
assignment process, have no meaningful effect on the decision process. This assumption
relies on the nature of the assignment process depicted in Section 2, and in the next Section,
I present several tests for its validity.

Combining assumptions A1 and A2, each βj is non parametrically identified by:

βj = ∫ ω(x)(E[IAi∣Fi = 0,Xi = x,Zij = 1] −E[IAi∣Fi = 1,Xi = x,Zij = 1])dG(x),

where G(x) is the empirical distribution of patent content X. Similar to the way I estimate
the overall gender bias, my main analysis imposes further parametric assumptions and
estimates each βj using linear regression, controlling for the text embeddings in an additive
separable way. To assess the sensitivity of my estimates to this functional form, I verify that
my findings are robust to using alternative non-linear models. Since my data covers 13 years
patent applications, and the value of a content varies over time, my analysis additionally
conditions on the filing year.

7.2 Variance Componenet

Under Assumptions A1 and A2, and as long as the within examiner heterogeneity with
respect to the patent text is restricted, one can estimate βj by running the following fixed
effect regression:

IAi = αJ(i) + βJ(i)Fi +X ′iγ + ϵi, (4)
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where Fi measures the femaleness of patent application i’s—usually an indicator for a mixed-
gender team—αj is the examiner base-level initial allowance rate, βj is the examiner-level
gender gap, and Xi are the 2,046 text embeddings representing the patent application content
together. To account for the changing value of content over time—what was once considered
novel may no longer be viewed as original—Xi also includes the first 100 UMAP components
interacted with a linear time trend.

I summarise the heterogeneity of examiner level leniency and gender gaps with the
following target variance parameters: σα, σβ, the sample standard deviations of αj and βj,
respectively, across examiners, weighted by the examiner total number of patent applications,
and Corr(α,β) = σα,β

σασβ
, the correlation between examiner leniency and bias. Likewise, to

quantify the share of variation explained by the start year of examiners and art units, I
estimate Equation (4) and the α and β parameters across the start-year of examiners and
art units, and their respective variance components.

I estimate the variance components by applying a variant of the Kline et al. (2020)’s
leave-one-out bias correction that accommodates the fact that my design matrix includes a
dense high dimensional segment of text-embeddings. For further details, see Appendix C.

7.3 Evidence for Conditional Independence Assumption

7.3.1 Balance Test

Assumption A2 implies that the assignment of examiners to applications (Zij) should not
be systematically correlated with non-text characteristics (Uij, Fi) conditional on the patent
content. Figure 7 tests that assumption by plotting the relationship between various examiner
characteristics and non-text characteristics after controlling for the BERT embeddings. The
non-text characteristics I explore include the presence of at least one female inventor (Figure
7a), at least one inventor with an Asian sounding name (Figure 7b), and the percentage of
females in the attorney team (Figure 7c).

The first examiner characteristic in each figure is the leave-one-out mean of the initial
allowance rate, which is often used in the literature to test for random assignment of
judges to cases (Arnold et al., 2018; Dobbie et al., 2018, 2022). The analysis also includes
other examiner characteristics such as education, gender, ethnicity, and years of experience.
Besides a negligible relationship between examiners with 0-1 years of experience and female
examiners, I do not find any statistically significant relationship between mixed gender
patents and examiner characteristics after controlling for the text embedding, even though
the uncontrolled relationship is not zero. Appendix Figure A.6 verifies that the results are
robust to other definitions of the femaleness of the patent, and Appendix Figure A.8 shows
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that they are not time-sensitive.

Figure 7: Balance test of examiner characteristics
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Note: This Figure plots the relationship between examiner characteristics and patent application non-text
characteristics with and without controlling for the patent application BERT embeddings. The gray dots
present the estimates from an OLS regression with no controls, and the blue dots present the estimates
from an OLS regression that includes BERT embeddings controls and an interaction of the first 100 UMAP
components and linear time-trend. Subfigure (a) displays the relationship between examiner characteristics
and an indicator for at least one female inventor, subfigure (b) presents that relationship with an indicator for
at least one Asian inventor, and subfigure (c) displays that relationship with the share of female attorneys.
Bars indicate 95% confidence intervals based on robust standard errors.

7.3.2 Omitted Variable Bias - Long and Short Regressions

Under assumptions A1 and A2, and as long as the treatment effect heterogeneity with respect
to the patent text embedding is limited, the estimates of examiner-level gender bias should be
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invariant to the inclusion of other non-text characteristics that are potentially correlated with
examination outcome.24 To assess this hypothesis, I run the following “short” regression:

IAi = αJ(i) + βJ(i)Fi +X ′iη + ϵi, (5)

and “long” regression

IAi = α̃J(i) + β̃J(i)Fi +X ′i η̃ +wiγ + ϵi, (6)

where Fi is an indicator for a mixed-gender patent, and wi includes patent attorney gender,
ethnicity, and years of experience, patent inventor team size, and an indicator for foreign
priority. αj and α̃j are examiner fixed effects measuring the leniency of examiner j, and βj

and β̃j are examiner level tendency to prefer mixed-gender patents. My objective is to assess
whether the estimates of αj and βj from the short regression in Equation 5 are sensitive to
the inclusion of the additional controls wi.

Figure 8: Omitted variable bias test in examiner leniency and gender bias
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(b) Relationship w/ βj

Note: This Figure plots the test for whether the estimated examiner leniency and gender bias effects (α̂j

and β̂j from equation 4) are correlated with other non-text characteristics that predict initial allowance:
law firm experience, team size, an indicator for foreign priority, indicator for at least one Asian inventor,
and proportion female attorney. The flat slopes indicate that examiner effects are not affected by the
inclusion of these covariates.

Figure 8 presents the main findings suggesting for little evidence for ommited variable
24Sensitivity to the inclusion of additional controls could also reflect treatment effect heterogeneity as

additional controls change the weights of each examiner effect and examiner gender gap.
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bias. Panel (a) displays the relationship between the examiner leniency levels α̂j, and the
controls index wiγ̂ estimated in the long regression of Equation (6), and panel (b) presents
the same relationship but with the examiner gender bias β̂j. α̂j and β̂j were estimated in
the “short” regression of equation 5, and Appendix Table A.2 verifies that these omitted
variables are predictive of initial allowance. The results suggest that examiner effects are
uncorrelated with the controls index. The magnitude of each slope coefficient is tiny, where
the slope coefficient for αj is 0.0002, and the slope for βj is -0.0002.25

8 Gender Gap Heterogeneity

8.1 Overall Variance Component Estimates

Table 5 reports the standard deviation, correlation, and mean estimates of the examiner,
start-year, and art unit level βj and αj effects. The standard deviation is the squared root of
the Kline et al. (2020) leave-out estimate, and the correlations are the ratio of the leave-out
covariance estimate and the standard deviations. In column (1), Fi is an indicator for having
at least one female in the team of inventors; in column (2), it is the proportion of females;
and in column (3), Fi is an indicator for having a female ranked first or second in the list of
patent inventors. Below, I describe the results in column (1), where the conclusions regarding
the heterogeneity of the gender gaps are qualitatively the same across the different measures
of Fi.

The standard deviation of αj, presented in Panel (i), suggests substantial heterogeneity in
examiners’ leniency. While previous literature has emphasized the importance of discretion
in the examination process (Lemley and Sampat, 2012; Frakes and Wasserman, 2017; Sampat
and Williams, 2019; Farre-Mensa et al., 2020), to my knowledge, this is the first estimate
of that leniency that acounts for the patent content and corrects for measurement error.
The standard deviation of αj is 9 percentage points, which is 110% of the mean initial
allowance level reported in Table 1. It implies that an application assigned to an examiner
with one standard deviation higher leniency compared to the mean would more than double
its chances of allowance in the first round of the examination process.

The standard deviation of βj, presented in the second row of Panel (i), implies that the
allowance probabilities of examiners vary substantially by the gender of the inventors. The
leave-out estimate of the standard deviation of the gender bias is 2.4 percentage points,

25This implies that the impact of a one standard deviation increase in examiner leniency on initial allowance
(std=9 percentage points, presented in Table 5) may be biased by 0.09 × 0.0002 = 0.000018 due to omitted
variables, and a one standard deviation increase in examiner gender bias on initial allowance (std=2.3,
presented in Table 5) may be biased by 0.023 × 0.0002 = 0.0000046.
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Table 5: Heterogeneity in gender bias in initial allowances

(1) (2) (3)
Any Female Proportion Female Female 1st or 2nd

(i) By examiner
Std(αj) 0.090 0.090 0.090
Std(βj) 0.024 0.037 0.022
Corr(αj , βj) -0.649 -0.840 -0.714

β̄j -0.0009 -0.0014 -0.0009
# of examiners 8335 8335 8147
# of obs 1216346 1216346 1207069

(ii) By start-year
Std(αj) 0.038 0.038 0.038
Std(βj) 0.012 0.020 0.012
Corr(αj , βj) -0.802 -0.774 -0.764

β̄j -0.0011 -0.0008 -0.0009
# of cohorts 38 38 38
# of obs 1216346 1216346 1216346

(iii) By art-unit
Std(αj) 0.052 0.052 0.052
Std(βj) 0.012 0.020 0.010
Corr(αj , βj) -0.333 -0.407 -0.405

β̄j -0.0013 -0.0025 -0.0016
# of art-units 587 587 585
# of obs 1216329 1216329 1216278

Note: This table presents the bias-corrected standard deviation and correlations
of examiners, examiner start-year, and art units leniency and gender bias,
estimated in a linear regression controlling linearly for patent text embeddings.
Different columns use different measures of the femaleness of the application.
Column (1) uses an indicator for mixed-gender patents, column (2) uses the
proportion female, and column (3) uses an indicator for having a female ranked
first or second in the list of inventors. All variance components are weighted by
the number of patent applications.

which is 29% of the mean initial allowance rate in the sample. This implies that a patent
application with mixed-gender or all-female inventors assigned to an examiner with one
standard deviation higher bias against mixed-gender patents would have 29% lower probability
of being allowed compared to an application with identical content but male-only inventors
and an average-leniency examiner.

Taken together, the evidence in Table 5 suggests examiner discretion and gender bias
play a crucial role in allowance decisions violating both horizontal and vertical equity. First,
although the probability of initial allowance is low on average, there are examiners who are
likely to allow a substantial share of the applications they examine. Second, although the
average examiner exhibits no bias, there is substantial variation in examiners’ tastes, with
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some favoring patents with female inventors and others not.
The third row in Table 5 shows a strong negative correlation between examiner-level

bias and leniency. In Section 10, I fit a nonlinear model for initial allowance and find zero
correlation between the two. It suggests, as noted in Kline and Walters (2021), that the
negative correlation I find here reflects a mechanical boundary effect as examiners with low
initial allowance rate probability have less opportunity to discriminate. The fourth row
presents the weighted average of βj, weighted by the number of applications per examiner.
In line with the OLS gender gap estimated in Table 3, the mean βj is zero.

Panel (ii) presents the variance components of αj and βj across the 38 unique start years
of examiners, spanning from 1975 to 2013. The estimated standard deviation of αj across
start-years is 3.8 percentage points, and that of the gender bias βj is 1.2. Since examiners
are nested within start years, following the law of total variance, I conclude that 17% of the
variation in the leniency of examiners and 25% of the variation in examiner-level gender bias
is explained by the variation across cohorts of examiners. At a start-year level, I find that
the negative correlation between the leniency level and gender bias is 50% stronger than the
one across examiners. The strong negative correlation, together with the finding that more
experienced examiners are more likely to be biased against mixed-gender patents (Figure 6)
implies that experienced examiners are more lenient, as was also documented in Frakes and
Wasserman (2017) and was attributed partially to differences in time constraints examiners
of different grade levels face.

Following the same exercise, panel (iii) presents the estimated standard deviation of αj
and βj across 587 art units. Examiners are not entirely nested within art units because some
move between art units or serve in more than one at the same time. Nevertheless, since
“movers” account for only 10 percent of the examiners, we can approximately state that
33% and 25% of the variation across examiners in leniency and gender bias is explained by
variability across art units.

The variance component estimators are calculated from a linear model with multiple
treatment margins and embedding controls. As discussed in Section 6, the OLS estimator
and other matching estimators do not necessarily agree. This issue is particularly pronounced
when dealing with a model with multiple treatment margins (Goldsmith-Pinkham et al.,
2022). To assess the sensitivity of my results to the estimand, In Appendix Table D.1,
I present the variance components of leniency and gender bias using Inverse Probability
Weighting (IPW). Specifically, restricting attention to examiners with at least 100 observations,
I start by estimating the propensity score of each examiner Pr(J(i) = j∣Xi, Fi = f) with an
OLS regression. Then, I use the IPW weights to reweight the data and estimate the variance
component with the reweighted microdata. See Appendix Section D for further details.
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8.2 Start-Year vs. Experience Effect

The evidence from Figure 6 and Table 5 suggests substantial heterogeneity in gender gaps
across examiners with different years of experience. Such variation could be driven by either
cohort effects, in which examiners of different cohorts have different gender tastes, or by
age/experience effect, in which more years of experience causes examiners to change and
become more biased against mixed-gender patents. To test these hypotheses, I run the
following fixed-effect regression accounting for the variation of both examiner and years of
experience:

IAi = αJ(i) + α2,exp(i) + (βJ(i) + β2,exp(i))Fi +X ′iγ + ϵi (7)

where exp(i) is the number of years of experience of examiner J(i) at the time of assignment
to patent application i. Therefore, α2,exp measures the leniency levels of examiners with exp
years of experience, and β2,exp measures the gender bias of examiners with exp years of
experience beyond the examiner levels leniency and gender tastes, measured by αj and βj.
As noted by Abowd et al. (2002) in the context of wage models with both firm and individual
fixed effects (Abowd et al., 1999; Card et al., 2013), estimation of model 7 is feasible only
among the set of examiners “connected” by the same years of experience.

Table 6 reports the variance component estimates from Equation 7, suggesting it is
a cohort, rather than age/experience effects, that drives the results in Figure 6. In the
first panel, I examine the stability of the standard deviation of examiner level gender gap
after accounting for years of experience gender gaps across the 8,335 examiners satisfying
the connectivity restrictions. Comparing the standard deviation of gender bias to the one
reported in Table 5, I find that controlling for examiner years of experience fixed effects has
a negligible effect on the examiner level variation when Fi is an indicator for mixed gender
teams (column 1) and when it is a continuous variable for the proportion female in the
inventor team (column 2). Moreover, it does not impact the estimated standard deviation
at all when Fi is an indicator for a female ranked first or second in the list of inventors.
The change in the estimated standard deviation of βexp is modest, between 10 to 5 times
smaller than the examiner level one for mixed gender and proportion female gender variables.
Furthermore, the estimated variance for βexp is negative when Fi is an indicator of a female
ranked first or second, suggesting that this variance component is very small or zero.

The second and third panels of Table 6 provide further evidence that experience effects
do not drive the variation in gender gaps across cohorts of examiners and art units. Years
of experience fixed effects have almost no impact on the standard deviation of gender gaps
across start years and a moderate effect on the standard deviation of gaps across art units.
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Table 6: Heterogeneity across examiners and years of experience

(1) (2) (3)
Any Female Proportion Female Female 1st or 2nd

(i) Examiner gap
Std(βj) 0.023 0.036 0.022
Std(βexp) 0.002 0.006 .
Corr(βj , βexp) 0.125 0.025 .

# of examiners 8335 8335 8147
# of obs 1216315 1216315 1207038

(ii) Start-year gap
Std(βj) 0.010 0.016 0.011
Std(βexp) 0.003 0.008 .
Corr(βj , βexp) 0.550 0.298 .

# of start-years 38 38 38
# of obs 1216315 1216315 1216315

(iii) Art-unit gap
Std(βj) 0.012 0.020 0.010
Std(βexp) 0.009 0.015 0.008
Corr(βj , βexp) -0.046 -0.050 -0.043

# of art-units 587 587 585
# of obs 1216298 1216298 1216247

Note: This table presents the bias-corrected standard deviation and correlations
of examiners, examiners’ start-year, and art units gender gaps, estimated in a
linear regression controlling for patent text embeddings using both units fixed
effect and examiners years of experience fixed effect as described in equation 7.
Different columns use different measures of the femaleness of the application.
Column (1) uses an indicator for mixed-gender patents, column (2) uses the
proportion female, and column (3) uses an indicator for having a female ranked
first or second in the list of inventors. All variance components are weighted by
the number of patent applications. Dots indicate an estimated negative variance
and, therefore, undefined standard deviation and correlation.

Taken together, these results establish that the heterogeneity in gender gaps across examiners
with different years of experience is driven mainly by cohort effects, where different cohorts
of examiners have different preferences toward the gender of the team of inventors.

8.3 Characterizing Biased Examiners

The analysis so far establishes that gaps in initial allowance vary substantially across examiners.
To further describe the type of examiners that exhibit bias, I report the coefficients from
regressions of β̂j from equation 4 when Fi is an indicator for mixed gender patents, on various
examiner characteristics. While such relationships do not necessarily describe a causal effect
of examiner attributes on gender bias, they offer a summary of which examiners are more
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likely to exhibit bias. Since bias varies across technologies and art units, I describe both
the cross-sectional relationship across all examiners and the within-art-unit relationship of
examiners’ attributes and bias.

Table 7 reports the main results. Columns 1-5 present the estimated coefficients from
a nuivariate regression on: whether the examiner holds a Ph.D. or higher degree, female
examiner, Asian examiner, years of experience, and the share of mixed gender patent applications
in the USPC class. Column 6 presents the coefficients from a regression where all the
covariates are included simultaneously. Finally, column 7 presents the estimated coefficients
in a regression that includes art unit fixed effects.

Table 7: Relationship between gender gap and examiner characteristics

(1) (2) (3) (4) (5) (6) (7)
PhD+ 0.0011 0.0002 0.0000

(0.0002) (0.0002) (0.0002)
Female 0.0010 0.0004 -0.0001

(0.0001) (0.0001) (0.0001)
Asian name -0.0000 -0.0004 -0.0007

(0.0002) (0.0002) (0.0002)
Yrs of experience -0.0004 -0.0003 -0.0003

(0.0000) (0.0000) (0.0000)
Sh. mixed gender apps 0.0068 0.0044 -0.0087

in USPC class (0.0006) (0.0007) (0.0014)
Art-unit FE No No No No No No Yes
Applications 1218137 1218137 1218137 1218137 1218137 1218137 1218137
Examiners 8335 8335 8335 8335 8335 8335 8335

Note: This table presents the relationship between examiner-level gender bias in initial allowance
β̂j and examiner characteristics estimated with an OLS regression. Columns 1-6 include only the
examiner characteristics listed in the table, and column 7 reports the coefficients from a regression that
additionally controls for art unit fixed effects. Robust standard errors are in parentheses.

Female examiners and examiners holding a Ph.D. are more likely to be biased against
men, while there is no correlation between the bias and examiners with Asian names.
Furthermore, in line with the results from the previous section, examiners with more years
of experience are more likely to be biased against mixed-gender patents. Lastly, I find that
the higher the share of mixed-gender patents in the USPC class, the less likely the examiner
is biased against mixed-gender patents. Column (6) reveals that most of these relationships
persist when controlling for all the covariates simultaneously, besides the coefficient on
examiner education and Asian examiners.

Within are-units, the relationship between gender bias and examiner characteristics
differs from the cross-sectional relationship. On the one hand, the negative relationship
between years of experience and gender bias is robust to including other characteristics and
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art unit fixed effects. On the other hand, there is no clear relationship between the gender of
examiners and bias within art units. Lastly, I find that while the cross-sectional relationship
between the share of mixed-gender teams and bias is positive, it is negative and twice as
large within art units. This pattern is consistent with the finding in Breda and Ly (2015)
documenting bias in favor of women in male-dominated fields in the entrance exam for French
higher education.

8.4 Within-Group Heterogeneity

Examiner gender

Table 8 reports the estimated means and standard deviations of the gender gap separately
by the gender of the examiner. The first panel presents the estimate of β, the average gender
gap, estimated in Equation 4 separately by examiner gender.26 The first row reports the
raw gender gap without controlling for the text embeddings, and the second row reports my
preferred estimate for the average gender gap, accounting for the text embeddings.

The first panel reveals two facts. First, the raw gender gap varies by the gender of
examiners, with a gap among male examiners twice the size of that among female examiners.
These differences could reflect either gender differences in bias or differences in the distribution
of examiners and applicants across fields and genders. Second, while the controlled gender
gap in the full sample is statistically insignificant from zero, on average, male examiners are
0.2 (SE = 0.001) percentage points less likely to initially allow a patent by mixed-gender
teams. In contrast, the point estimate for the gender bias of female examiners is very small
in magnitude, positive, and statistically insignificant. The estimates for the set of examiners
with non-classified names are similar to the ones among the male examiners.

The second panel of Table 8 suggests substantial heterogeneity by examiner gender. Not
only are female examiners less biased on average, but they also use less discretion and have
much lower levels of variability in gender bias. The standard deviation of the leniency of
female examiners is 7 percent, 72% of the standard deviation of the leniency levels of male and
unknown examiners. The standard deviation of the gender gap among female examiners is
only 1.3 percent, half of the standard deviation of the gender gap among unknown examiners.
Taken together, I conclude that female examiners are substantially less likely to be biased,
thereby posing less risk for bias in the system.

26This table uses Fi and an indicator for mixed-gender team. See Appendix tables A.4 and A.5 for the
equivalent exercise with Fi being the share of female inventors and an indicator for having at least one female
in the team of inventors.
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Table 8: Heterogeneity in gender gap by examiner gender

Examiner gender

Female Male Unknown
(1) (2) (3)

(i) OLS gap
w/o embeddings -0.0129 -0.0221 -0.0229

(0.0011) (0.0009) (0.0018)
w/ embeddings 0.0007 -0.0020 -0.0021

(0.0011) (0.0010) (0.0018)
(ii) Examiners fixed-effects

Std(αj) 0.070 0.094 0.097
Std(βj) 0.013 0.026 0.025

β̄j -0.000 -0.001 -0.001
# of examiners 1,995 5,001 1,339
# of apps 289,703 732,605 194,038

Mean IA 0.062 0.090 0.091
Share mixed teams 0.187 0.138 0.153

Note: This table presents the distribution of gender gaps by
gender of the examiner. Panel (i) reports the mean gender bias
separately by examiner gender with and without controlling for the
text embeddings. Panel (ii) reports the bias-corrected standard
deviation of examiners’ gender bias and leniency estimated in a
linear regression controlling linearly for patent text embeddings.
All variance components are weighted by the number of patent
applications.

Examiner start year

Different cohorts of examiners differ not only in their average gender preferences but also in
the probability of performing extreme levels of gender bias. Figure 9 studies that phenomenon
by estimating the within start-year bins variance components of αj and βj when the femaleness
of the patent is measured by whether there is at least one female in the team of inventors
and by the proportion of females in the team of inventors. The pink “X”s are the estimated
standard deviation of αj, and the blue dots are the estimated standard deviation of βj.

The figure shows that younger cohorts of examiners who joined the USPTO after 2003
exhibit lower levels of variability in discretion, with a standard deviation of αj nearly
50% lower than that of older cohorts. While these younger cohorts demonstrate reduced
discretion, the variance in gender gaps is more stable across diffrent cohorts.
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Figure 9: Standard deviation of examiner gender gap and leniency by examiner start year
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(a) Any female inventor
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(b) Proportion female

Note: This Figure plots the bias-corrected standard deviation of examiner gender gap and leniency. The
blue dots are the estimated standard deviation of examiners’ gender gap, and the pink “X”s are the
estimated standard deviations of examiners’ leniency. All variance estimates are weighted by the number of
applications per examiner.

Filing year

The average gender bias decreased over time and converged to zero. This leads to the follow-
up question: does the risk of encountering a biased examiner also change accordingly? To
test that, Figure 10 plots the standard deviations of βj within bins of 3 to 4 years. To assess
the trend in discretion over time, Figure 10 additionally plots the estimates of the standard
deviation of αj.

Although the average gender gap converged to zero over time, the variance in discretion
and bias nearly doubled. Combined with the findings in Table 6, this suggests that changes
in examiner composition drive these trends. Younger examiners are more aligned in their
decisions but differ in gender preferences from senior examiners, leading to increased polarization
in preferences for gender and greater uncertainty regarding the outcome of the examination
process.
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Figure 10: Standard deviation of gender gap and leniency over time
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(b) Proportion female

Note: This Figure plots the bias-corrected standard deviation of examiner gender gap and leniency. The
blue dots are the estimated standard deviation of examiners’ gender gap, and the pink “X”s are the
estimated standard deviations of examiners’ leniency. All variance estimates are weighted by the number of
applications per examiner.

9 Robustness and Mechanisms

9.1 Rejection Reasons

To investigate the underlying roots behind initial rejections, I utilize the “USPTO Office
Action Rejection data set” which covers the universe of mailed office actions and grounds for
rejections from 2008 to 2017. A typical Non-Final Rejection Office action by an examiner
identifies the specific claims and the statutory or nonstatutory grounds on which those claims
are objected to and/or rejected. Examiners can reject a patent on the following grounds: a
101-rejection, which reflects a violation of eligibility, double patenting, or lack of usefulness
and credibility; a 102-rejection, which reflects a lack of novelty; a 103-rejection, which reflects
a lack of obviousness; and a 112-rejection, which describes failure to meet the requirements
regarding the adequacy of the disclosure of the invention.

For every rejection ground category, I generate four indicators, one for each rejection
ground, which equals one if the patent application was rejected at the first round of examination
on the basis of that category. Notably, a rejection could have multiple grounds, and nd
each ground may apply to more than one claim. As discussed in Frakes and Wasserman
(2017), rejections based on lack of novelty and obviousness are typically viewed as more
time-consuming as they require a delicate prior art search and prior art comparison.
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Table 9 presents the rejection reasons analysis. Panel (i) presents the coefficient from an
OLS regression of an indicator for rejection reason on an indicator for at least one female
inventor on the sample of patent applications filed after 2008. The first row reports the
uncontrolled gender gap, while the second row shows the gap after controlling for patent
text embeddings. Interestingly, the raw gap in obviousness and novelty rejection reasons is
very small and indistinguishable from zero. These are the most prevalent rejection types
that require effort and prior art search. In contrast, on average, mixed-gender patents are
more likely to be rejected because of lack of eligibility and writing - less common and simpler
rejections. In line with previous findings, the second row of Panel (i) shows that the average
gender gap disappears after controlling for the patent application text.

To study which rejection reasons are more likely to serve as grounds for rejection among
biased examiners, I run the following stacked regressions together, clustering the standard
errors by application id:

IAi =αJ(i) + βJ(i)Fi +X ′iγ + ϵi
IRi =αRJ(i) + βRJ(i)Fi +X ′iγR + ϵRi .

The first equation is identical to the main regression I present in previous sections. In the
second equation, IRi is an indicator for the reason of rejection, αRj measures the inclination
of examiner j to initially reject on the ground of reason IR, and βRj measures the extent to
which examiner j is more likely to reject all male vs. mixed gender patents based on that
ground. With the estimates of gender bias βj and βRj , I estimate the variance-covariance
matrix of (βj, βRj ). For detailed information on the estimation, see Appendix Section C.27

Panel (ii.a) of Table 9 reports the corresponding estimated standard deviations and
correlations. The standard deviation of the gender gap in initial allowance in 2008-2013
is 2.8 percentage points, slightly higher than the one in the full sample, reflecting the higher
variance level of gender gaps in recent years documented in Figure 10. As expected, there
is a strong negative correlation between examiner-level gender gaps in initial allowance and
examiner-level gender gaps in all the rejection reasons.

Estimates of the variance-covariance components of the examiner gender gaps in initial
allowance and rejection reasons can be used to estimate the coefficients from the infeasible
OLS regression of initial allowance gender gap on rejections gender gaps:

βj = δ0 + δ1β
R
j + uj,

27Lachowska et al. (2022) run similar seemingly unrelated regressions with employer-employee data
measuring the covariance between firm effects on wages and hours in Washington.
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where the δ1 coefficient is a function of the variance components, i.e., the ratio of the
covariance between βj and βRj and the variance of βRj . Given these estimates, I calculate
the implied R2 from this regression that measures the share of gender bias variability in
initial allowance explained by bias in each rejection reason. If a biased examiner chooses the
rejection reason proportional to the prevalence of each rejection reason, then the R2 should
be proportional to the likelihood of each rejection reason. In contrast, if they are more likely
to use a particular rejection ground when performing a biased assessment, the proportions
should not align with the distribution of rejections.

Table 9: Gender gap in initial allowance and the rejection reason

Rejection type

Obviousness (103) Novelty (102) Eligibility (101) Writing (112)
(1) (2) (3) (4)

(i) OLS gap
w/o embeddings 0.001 -0.014 0.022 0.041

(0.002) (0.002) (0.001) (0.002)
w/ embeddings 0.002 0.000 -0.000 -0.001

(0.001) (0.001) (0.001) (0.001)
(ii) Examiner fixed-effects
(a) Variance componenets

Std(βj) 0.028 0.028 0.028 0.026
Std(βR

j ) 0.046 0.043 0.039 0.041
Corr(βj , βR

j ) -0.493 -0.326 -0.255 -0.530

β̄j 0.000 0.000 0.000 0.000
β̄R

j 0.003 0.001 -0.000 -0.003

(b) Implied OLS
coefficient -0.298 -0.211 -0.184 -0.345
Implied R2 0.254 0.107 0.065 0.297

# of examiners 6,996 6,996 6,996 6,996
# of apps 504,884 504,884 504,884 504,884
Mean IA 0.098 0.098 0.098 0.098
Mean rejection outcome 0.694 0.519 0.145 0.354

Note: This table presents the mean and examiner-level heterogeneity in gender gaps for initial allowances
and initial rejections by rejection reasons. Panel (i) reports the mean gender gap in rejection reasons,
estimated using OLS regressions with and without controlling for text embeddings. Panel (ii) shows the
bias-corrected standard deviation of examiners’ gender gaps, estimated in a stacked regression with initial
allowances and rejection reasons as outcomes, as described in Appendix Section C, controlling for patent
text embeddings. Variance components are weighted by the number of patent applications.

Panel (ii.b) in Table 9 presents the implied OLS δ0 coefficient and R2 from the infeasible
regression mentioned above, revealing that biased examiners are disproportionally more likely
to perform writing-based rejections. The gender gaps in rejections based on obviousness (103)
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and writing (112) explain most of the initial allowance gender gap variability, accounting
for 25 and 30 percent, respectively, of the variance of βj. However, these rejections are
not equally likely. Rejections based on obviousness are the most prevalent, accounting for
almost 70 of the rejections in the first round of examination, being twice more likely than
writing-based rejections.

Taken together, these indicate that biased evaluations are more likely to be based on
writing. This result aligns with the reasoning that such rejections are “simpler” because
they require less effort than prior-art-based rejections. A similar pattern was identified in
Frakes and Wasserman (2017), in which examiners facing more time restrictions had a lower
probability of performing obviousness rejections.

9.2 Other Non-text Characteristics

To assess the extent to which other non-text patent characteristics, such as inventor ethnicity
and lawyer characteristics, translate into gender disparities due to disparate impacts, I rerun
the main analysis, including additional non-text characteristics. Specifically, I re-estimate
Equation 2, sequentially adding the following covariates: (i) an indicator for the presence of
at least one inventor with a foreign name, defined as not appearing in the SSA name tables;
(ii) an indicator for the presence of at least one Asian inventor on the team; and (iii) the
years of experience of the attorney’s office.28

Panel (i) of Appendix Table A.6 suggests that the mean overall gender bias estimates are
robust to the inclusion of other non-text characteristics. Column 1 replicates the results from
Table 3, and columns 2-5 report the coefficients from a regression that includes an additional
non-text characteristic, suggesting that the including other non-text characteristics does not
affect the measures of the gender gap in initial allowance. Moreover, I find no average
allowance gap by inventor ethnicity or attorney’s gender. Contrarily, however, the lawyer’s
years of experience are positively related to the initial allowance even after controlling
for the patent application text. That could reflect either the causal effect of experienced
law companies on the application process beyond their effect on writing or differences in
examiners’ preferences towards more established law companies.

Second, Panel (ii) reports the variance components from the following fixed-effect regression

IAi = αJ(i) + βJ(i)Fi + ηJ(i)wi +X ′iγ + ϵi,

where wi is the additional non-text characteristics and ηj measures the variation in examiners
tastes with respect to characteristic wi. Then, Panel (ii) reports the standard deviation and

28See Appendix B for details on variable construction.
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correlation of (βl, ηj). Echoing the results from Panel (i), the variance of gender bias is
unaffected by the inclusion of other characteristics. Results suggest that examiners exhibit
variation with respect to these other characteristics at a comparable level to the variability
in gender bias, but the correlation between gender bias and these other biases is very low,
amounting between 1 to 6 percent.

9.3 Robustness

One of the grounds for rejecting patents is lack of novelty, which relates to the extent to
which a particular innovation differs from the existing stock of knowledge at that time.
Mismeasurement of this value by the BERT embeddings, in a way correlated with the
gender composition of the patent, could lead to biased estimates. To address this, we
measure the novelty of a patent using an approach similar to Kelly et al. (2021). For each
patent application, we calculate the mean cosine similarity between it and all other patent
applications filed in the same technology center during the three years preceding its filing.
The closer the patent is to prior knowledge, the less novel it is, whereas greater distance
suggests a higher likelihood of being a breakthrough invention. We then use this measure
as an additional control when estimating the gender gap in initial allowance rates between
mixed-gender and all-male patent applications.

The similarity index we use strongly predicts allowance decisions, as shown in Appendix
Figure A.7. However, its inclusion in the regression does not affect the estimated gender
gaps, regardless of whether embedding controls are included. This suggests that there is
no significal correlation between breakthrough patents and the gender composition of the
inventors. Additionally, we find little heterogeneity across applications with different values
of similarity indices. Among the most innovative patents (those with the lowest cosine
similarity values), the raw gender gap is 25% lower than the overall raw gender gap. However,
this heterogeneity disappears entirely after controlling for text embeddings, resulting in zero
effective gender gaps, regardless of patent novelty.

10 The Cost of Variance in Bias

The analysis conducted thus far has shed light on the prevalence of gender bias during the
first round of the examination process. Next, I turn to explore the broader implications
of such bias and its potential effects on economic outcomes by estimating how bias and
discretion at the examiner level translate into differences in granted patents’ stock market
return as measured by Kogan et al. (2017).
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Identification of the effect of bias on the market return of granted patents is challenging.
Unlike the first round of the application process, Aneja et al. (2024) find that women are less
likely to persist and resubmit their patent application if initially rejected. Hence, a gender
gap in outcomes of granted patents could also reflect differences in the female behavior
rather than the examiners. In addition, market return is observed only for granted patents
assigned to publicly traded firms, introducing a sample selection. To address this concern,
this section adopts a sample selection correction approach inspired by the Heckman selection
model (Heckman, 1979) exploiting examiners as instrumental variables, conditional on the
patent text. I model the allowance decision of examiners parametrically as a single index
model and use that model to simulate different counterfactuals of examiners’ behavior. Since
examiners directly affect the outcomes of rejected patents by restricting the scope of their
claims and adding prior art citations, I restrict attention to initially allowed patents, thereby
not violating the exclusion restriction assumption.

10.1 Examiner Decision

I start by modeling the initial allowance decision of examiners from Section 4.1 structurally.
I assume examiners form an accurate posterior mean prediction, E[qi∣ϵij,Ci, Fi = f], of the
patent quality qi given the available information on patent content Ci, the gender mix of the
inventors Fi, and a noisy signal ϵij. To make an allowance decision, each examiner compares
the posterior mean quality to a subjective cost, τj(Ci, f), for allowing a patent with gender
Fi = f and content Ci. Thus, this model yields the following decision rule:

IAij = 1{E[qi∣ϵij,Ci, Fi = f] ≥ τj(Ci, f)} (8)

= 1{µ(Ci, f) + uij ≥ τj(Ci, f)}.

Taste-based gender bias, as in Becker (1957), arises when examiners perceive differing
social costs from allowing patents with different mixed-gender teams but the same expected
posterior quality by applying different posterior quality thresholds by gender. Models of
inaccurate stereotyping can result in observationally equivalent bias (Arnold et al., 2018;
Bohren et al., 2022). Statistical discrimination as modeled in Aigner and Cain (1977) arises
when gender affects the posterior mean prediction of patent quality due to differences in the
prior distribution of patent quality by gender. As detailed in Section 4, all of these models
would result in a gender gap in the probability of initial allowance where Pr(IA = 1∣Ci, Fi =
0) ≠ Pr(IA = 1∣Ci, Fi = 1).

For every patent application, I model the potential log market return Rij(d) of patent
application i that was examined by examiner j as a function of whether the patent application
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was initially allowed d ∈ {0,1}:

Rij(IAij) = ψc(Ci, Fi)IAij + δcj(Ci, Fi)(1 − IAij) + ωij, (9)

where ψc(Ci, Fi) is the mean log market return among initially allowed patents, δcj(Ci, Fi)
is the mean log market return among initially rejected patents, and ωij is a mean zero
unobserved component. Note that the expected market return among initially rejected
patents is affected by the identity of the examiners because examiners can restrict the scope
of the patent by requesting amendments to the patent claims and demanding the inventors
cite additional prior art. However, among patents that were allowed in the first round of
examination, there is no direct examiner causal effect. Therefore, the expected market return
of firms assigned to initially allowed patents is:

E[Rij ∣Fi,Ci, J(i) = j, IAji = 1] = ψc(Ci, Fi) +E[ωij ∣Fi,CiJ(i) = j, IAij = 1], (10)

where E[ωij ∣Fi,Ci, J(i) = j, IAij = 1], is the expected unobserved component of market
return among initially allowed patents with gender mix Fi and patent content Ci that
were assigned to examiner j. If the perceived quality of examiners is uncorrelated with
market return (Cov(ωij, uij) = 0), then one could estimate Equation (10) by running an
OLS regression. Otherwise, E[ωij ∣Fi,Ci, J(i) = j, IAi = 1] is the control function that
summarizes the selection bias. Note that finding that ψc(Ci,0) ≠ ψc(Ci1) need not signal
bias unless we think that examiners seek to maximize market returns (Canay et al., 2024).
In any case where q ≠ R and q and R are not very strongly correlated, it is possible
that the average patents by mixed-gender authors have different market returns, while
Pr(IA = 1∣Ci = c,Fi = 0) = Pr(IA = 1∣Ci = c,Fi = 1) so applications with the same content
and different gender-mix of authors receive the same treatment. Such disparities in market
return conditional on patent content could reflect, for example, differences in the firms male
and female inventors work at or differences in how male and female inventors translate their
inventions into valuable products.

The joint distribution of (uij, ωij) is modelled as jointly normal:

⎛
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uij

ωij
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where ρ captures the extent to which the decisions of examiners are correlated with patents’
stock market return. When ρ > 0, market return is correlated with the measure of quality
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perceived by examiners. In that case, among examiners who are biased against females, the
total market return of allowed patents by mixed-gender teams would be lower than the total
market return had these patents been judged by the same examiner as an all-male team of
inventors, and vice versa.

Identification: Selection models without excluded instruments are only identified by functional
form restrictions (Heckman, 1990). Therefore, following the findings in Section 5.3, I treat
examiners as instruments that shift the probability of allowance without directly affecting
the market return of initially allowed patents. Formally, identification requires the following
assumptions: Relevance, exclusion, and monotonicity. The validity of the first two assumptions
has already been established in the previous sections. I find that discretion plays a significant
role in the allowance decision of examiners and that, conditional on the patent application
content, the assignment of applications to examiners is as good as random. Also, since I
estimate the model only among initially allowed applications, examiners, by construction,
have no direct causal effect on market return.

The third assumption, monotonicity, requires formally that for every pair of examiners
j and ℓ, either Pr(IAij = 1) ≥ Pr(IAiℓ = 1) ∀i, or Pr(IAij = 1) ≤ Pr(IAiℓ = 1) ∀i. In fact,
this is a weaker assumption of the well-known strict monotonicity assumption by Imbens
and Angrist (1994). Strict monotonicity does not allow for random violation of the common
ordering that could arise when uij ≠ 0. This relaxation of the strict monotonicity was
introduced in Frandsen et al. (2023), allowing random violation in monotonicity as long as
uij have the same variance for all examiners.

Conceptually, the monotonicity assumption requires that examiners agree on the ranking
of applications on average, therefore, this assumption imposes restrictions on the underlying
behavioral model and skills of examiners. To relax this assumption, I allow the preferences
of examiners to vary across patent applications by inventor gender and by the content of
the patent τj(Ci, Fi). By doing so, I allow examiners to rank patents with different content
differently, requiring monotonicity only among applications with the same gender and patent
content.

Rather than controlling for over 2,000 text embeddings, I control for a lower dimensional
representation of the patent content to relax the monotonicity assumption, and in the next
section, I explain how I leverage the propensity score from Section 8.1 to reweight the
maximum likelihood so it accounts for embeddings. I use the first two components of the
UMAP dimensionality reduction presented in Figure 2, which I denote by x̃. Thus, the
random thresholds and the parameters in the market return and initial allowance equation
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are modeled as follows:

µ(x̃i, Fi) =m0 + x̃′im0x + (m1 + x̃′im1x)Fi
τj(x̃i, Fi) = τ0j + x̃′iτ0xj + (τ1 + x̃′iτ1xj)Fi
ψ(x̃i, Fi) = ψ0 + ψ1Fi + x̃′iψx,

where x̃ is normalized to mean zero with a standard deviation of one.

Likelihood: Define θj = (τ0j, τ1j, τ ′0xj, τ
′

1xj). For every patent application i assigned to
examiner J(i), we have the following probabilities:

pi(θJ(i)) = Pr(IAiJ(i) = 1∣Fi, x̃, θJ(i))
fi(θJ(i)) = Pr(Ri = r∣IAi = 1, Fi, x̃, θJ(i))

where pi(θj) is the probability of initial allowance, and fi(θj) captures the probability density
of observing Ri = r for initially allowed patents. Let Ij ≡ {i ∶ J(i) = j} be the set of
applications that were assigned to examiner j. The likelihood of observing {IAi,Ri, Fi, x̃i}i∈Ij

for the patent applications assigned to examiner j is

lj({IAi,Ri, Fi, x̃i}i∈Ij
∣θj) = ∏

i∈Ij

(1 − pi(θj))1−IAi ⋅ fi(θj)IAi .

I account for differences in patent content beyond the first two UMAP components by
reweighting my likelihood to match the distribution of examiner-gender characteristics. I
begin with the propensity scores psij = Pr(J(i) = j∣Ci, Fi = f) from Section 8.1. Then,
I normalize the weight of each application in two steps. In the first step I normalize
wij = ( 1

psij
)/(∑i∈Ij

1
psij
) to sum to one within each examiner. Then, to hold the number

of applications per examiner constant, I form the adjusted weights:

w̃ij = wij ×Nj

where Nj is the total number of applications assigned to examiner j. Therefore, the likelihood
of observing {IAi,Ri, Fi, x̃i}i∈Ij

for the applications assigned to examiner J(i) = j is:

lj({IAi,Ri, Fi, x̃i}i∈Ij
∣θj) = ∏

i∈Ij

[ (1 − pi(θj))1−IAi ⋅ fi(θj)IAi]
w̃ij

.

This content-adjusted likelihood ensures that examiners with more applications have more
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influence on the estimation, which aligns with my estimation strategy of the variance components
in Section 7.2. A similar reweighting approach was taken in Chan et al. (2022).

I treat the examiner-level thresholds θj as draws from a prior normal distribution with
mean zero and variance-covariance matrix Σ:

θj ∼ N(0,Σ).

Finally, the log-likelihood of the data given the parameter vector Θ = (µ0, µ0x, µ1, µ1x, ψ0, ψx, ψ1,Σ)
is given by:

L(Θ∣IAi,Ri, Fi,Ci) = ∑
j

log∫
θ
lj({IAi,Ri, Fi, x̃i}i∈Ij

∣θj)ϕ(θj ∣Θ)dθj,

where ϕ(θj ∣Θ) represents the pdf of the normal distribution, and the integral is computed
by simulated maximum likelihood.

10.2 Results

Table 10 presents the main parameter estimates of Θ. Panel (i) displays the estimates for the
initial allowance regression. µ0 governs the mean initial allowance rate for all-male patent
applications and µ1 the differences between all-male and mixed-gender. In line with my
findings using a linear model, the estimate of µ1 is very small and insignificant from zero,
suggesting that there is no average difference in allowance probability between mixed-gender
and all-male patent applications.

Panel (iii) presents the variance of the allowance threshold of examiners, where σλ0

represents the standard deviation of the leniency of examiners, and σλ1 describes the extent to
which the allowance threshold of examiners differ between all-male vs. mixed-gender patent
applications, i.e., the standard deviation in gender bias. Translating the σλ1 to allowance
probability space, the estimates in Table 10 imply that the variance of gender bias for the
average patent text is 0.022, which accords with the findings in Table 5. Additionally, I
find that the correlation between λ1 and λ0 is zero, suggesting that the negative correlation
reported in Table 5 reflects a mechanical boundary relationship.

Panel (ii) presents the estimates of the log market return equation conditional on initial
allowance and after correcting for selection bias, where ψ0 describes the mean log market
return among all-male patents and ψ1 describes the difference between all-male and mixed-
gender teams of inventors. On average, mixed-gender patents generate 0.247 higher log
market return than no-female patents with equivalent patent content and text. This disparity
could reflect differences in the productivity of the firms female inventors work at or differences
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Table 10: Sample selection parameter estimates

(1)

(i) IA
µ0 -1.749

(0.010)
Any female (µ1) -0.010

(0.017)
(ii) Log market return
ψ0 1.275

(0.067)
Any female (ψ1) 0.247

(0.025)
(iii) Random effects
στ0 0.650

(0.003)
στ1 0.338

(0.007)
Corr(τ1, τ0) 0.039

( 0.220)
(iv) Outcome-IA dist.
ρ 0.105

( 0.041)
σ 1.484

( 0.007)

Likelihood -122581.4
# of parameters 19
# of apps 472408
# of examiners 7550

Note: This table reports the estimated parameter from a selection model (Heckman,
1979) of the joint distribution of initial allowance and stock market return. µ0
and σλ0 determine the distribution of examiners’ initial allowance decision for all
male applications, and µ1 and σλ1 determine the distribution of examiners’ initial
allowance decision of mixed gender applications. ψ0 describes the mean Kogan et al.
(2017) stock market return of all male applications, and ψ1 describes the difference
between all male and mixed-gender patents. Corr(λ1, λ0) describes the correlation
between examiners allowance threshold of all male vs. mixed gender patents. Panel
(iv) reports the parameters of the joint distribution of initial allowance and market
return error terms.

in the productivity of the teams female inventors participate in.
Nevertheless, even if mixed-gender patents generate more valuable inventions for firms,

mean zero gender bias together with positive variance don’t necessarily imply that the
behavior examiners generate inefficiencies. Variance in bias generates lower total returns
if the objectives of examiners, i.e., the object they maximize, are correlated with market
return. This aspect is evident from the estimate of ρ in panel (iv), which shows that the
correlation between initial allowance decision and market returns is 0.1 (SE = 0.004). The
finding that the decision of examiners is moderately positively correlated with economic
outcomes aligns with the findings of Matcham and Schankerman (2023) who model the full
screening and renegotiation decisions of examiners and applicants.
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10.3 Counterfactuals

I evaluate the economic implications of positive variance in bias together with mean zero
gender bias via a simulation exercise. Using the parameters in Tables 10, I simulate a set of
6,000 examiners, each examining 1,500 applications with an average patent text embedding
value, enforcing 15% of the teams to be mixed-gender teams. I evaluate the impact of bias and
discretion on stock market return using two counterfactual exercises. In both, I compare the
status quo distribution of examiner behavior in which examiners exhibit substantial variation
in discretion, mean zero gender bias, and positive variation in bias. I compare the status
quo to two scenarios. The first considers a new initial allowance decision rule that maintains
the same examiner-level initial allowance rate but enforces uniform zero gender bias for all
the examiners. Therefore, this simulation allows for examiner heterogeneity in leniency but
shuts down only the gender bias component while maintaining the same number of allowed
applications as in the status quo. Formally, for every examiner j, I find the scalar t̃j such
that

Pr(uij ≥ τj0 − µ0 + (τj1 − µ1)Fi) = Pr(uij ≥ t̃j).

The second scenario considers the initial allowance decision rule in which there is no
discretion across examiners. To maintain the same total number of applications accepted
across counterfactual simulations, I set the examiner threshold to be the one that attains the
same baseline rate of initial allowance. Then, for every scenario, I report the stock market
returns of initially allowed patents, where the main focus is on the compliers, i.e., those
applications that were not allowed in the status quo but are allowed under the counterfactual
exercise and the opposite. If the total stock market return of the first is greater than the
second, then discretion generates economic loss.

Variation in bias and discretion generates a substantial economic loss, as reported in
Table 11. Panel (A) reports the total market return under uniform zero bias. It shows
that 1.1% of the female applications would have been affected by the zero variance in
bias policy, increasing the average stock market return of allowed patents by 231 thousand
dollars. Among all male applications, 0.22 percent would be affected by the policy, resulting
in an average increase of 47,000 dollars per application. With an average of 40,000 patent
applications per year assigned to publicly traded firms and an average of 8.5% initial allowance
rate, column (4) shows the total loss in stock market return amounts to 1.4 million dollars
for mixed gender patents and 299 thousand dollars for all male patents a year. This total
cost of 1.7 million dollars per year reflects only a lower bound of the social cost of positive
variance of gender bias because it accounts only for the loss in the first round of the patent
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examination process. Under the assumption that examiners follow the same behavior in
later rounds, column (5) shows that this total cost reaches 12.6 million dollars per year for
eventually granted patents.

Table 11: Counterfactuals under uniformly zero bias

(1) (2) (3) (4) (5)
Allowance given Allowance taken Difference Total market loss

IA Ever granted

(A) Uniform zero bias
(i) Mixed-gender apps

Av. market return 5.867 5.688 0.231 1.372 10.333
Share 0.0116 0.0117

(ii) All-male apps
Av. market return 4.572 4.529 0.047 0.299 2.250
Share 0.0022 0.0022

(B) Zero discretion
(i) Mixed-gender patents

Av. market return 6.270 5.522 0.231 4.712 35.570
Share 0.0401 0.0400

(ii) All male patents
Av. market return 4.972 4.476 0.047 5.447 41.011
Share 0.0310 0.0303

Note: This table reports the average market return (measured in a million US dollars) of all-male and mixed-
gender patent applications under the status-quo distribution of examiners’ gender bias reported in Table
10 and under two additional counterfactual exercises. Panel (A) reports the counterfactual outcomes under
uniform zero bias while allowing for variation in discretion across examiners. Panel (B) reports the results
under no variation in discretion across examiners, setting all examiners’ threshold to the one that results
with the mean initial allowance rate. Column (1) reports the average market return among the patent
applications that were not allowed under the status quo but are allowed under the uniform zero bias/zero
discretion simulation. Column (2) reports the average market return among the applications allowed under
the status quo but not under the uniform zero bias/zero discretion simulation. Column (3) reports the
difference between column (1) and column (2). Columns (4)-(5) report the total yearly difference in market
return for 40,000 applications assigned to publicly traded firms, with 15% mixed-gender teams. Column
(4) reports the total market return loss among initially allowed patent applications, and column (5) reports
the total loss for ever-granted patent applications, assuming the first round of examination behavior and
later rounds of examination distribute similarly.

The economic cost from any variation in discretion across examiners is almost six times
larger. In Panel B, I report the mean market return of compliers, comparing the status quo
to the no-discretion scenario. The share of compliers is higher under this exercise. However,
since I enforce a symmetric distribution of discretion, the average market return loss per
patent application is identical to the one found in Panel A. The larger share of compliers
eventually results in a larger total loss of 10.15 million dollars per year among initially
allowed patent applications and a total of 76.6 million dollar loss per year for eventually
granted patent applications. To have a sense of this magnitude, it amounts to 31% of the
value of the median public US firm in 2013.
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11 Conclusion

Women are underrepresented in the patent system. Yet, the extent to which observed
disparities arise from discriminatory practices is unclear. To shed light on this, this study
analyzes the gender gap in the first round of the examination process conditional on the
patent application text. This paper finds that while the average gender bias is zero, it masks
substantial heterogeneity across examiners, where some examiners are biased against women
and some others are biased in favor of women. The start-year of the examiner explains 25
percent of the variance of gender bias, where senior examiners are more likely to be biased
against mixed-gender patents, and young examiners are more likely to be biased against
no-female patents. Lastly, studying the dynamics over time, I find that, on average, the
system evolved from being discriminatory against women in the years 2001-2003 to being
unbiased on average. However, due to the changes in the cohort composition of examiners,
that variance in gender bias has increased over time, reflecting an increase in the risk of
encountering an abnormally biased examiner.

Much of the discrimination literature primarily fixates on average gaps, which map
only partially to fairness and inefficiencies. First, even though there is no ex-ante bias,
heterogeneity in bias undermines ex-post horizontal equity where patents of equivalent
quality but different inventor team compositions experience disparate odds of approval.
Second, an exclusive focus on mean bias overlooks the detrimental effects of misallocation,
which may manifest even if the mean bias is zero. Utilizing Kogan et al. (2017)’s stock market
return model for patents, my analysis estimates the annual cost of having a positive variance
in gender bias among initially allowed patent applications assigned to publicly traded firms
to be approximately $1.7 million. Extrapolating the implied cost for granted application, I
report that bias generates a loss of 12.6 million dollars per year.

The findings in this paper call for reassessing the patent examination process, particularly
regarding examiners’ access to inventors’ names. Implementing blind reviews, potentially
supported by computer-based methods, could provide effective remedies. Additionally, since
only a small number of examiners exhibit significant bias, the USPTO could identify these
evaluators and investigate their work (Avivi et al., 2021; Kline et al., 2022).

An interesting topic for future research is to assess the extent to which examiner discretion
and bias influence inventors’ behavior. If women’s motivation is more negatively affected by
bias, even a symmetric, two-sided bias could lead to larger disparities in the patent system
(Aneja et al., 2024). Understanding the disparate impact of discretion is also critical for
evaluating the welfare costs of bias, especially if differential behavior changes the distribution
of patent quality of granted patents. Moreover, if women are risk-averse and aware of the
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high levels of discretion and bias in the system, this could discourage them from pursuing
careers as inventors or submitting patents. Determining the causes of selection into science
and the role of information remains an important and active area of research (Bell et al.,
2019).
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A Appendix Figures and Tables

Figure A.1: Visual Illustration of a Neural Network Model

Note: This Figure illustrates an example for a generic neural network model with 3 hidden layers.
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Figure A.2: Split sample binned scatter of embeddings prediction of patent quality proxies
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Note: This Figure plots a binned scatter with 100 bins of a split sample OLS prediction of examiners’
decisions, log citations, and log market return with the patent text embeddings against the real values.
Subfigure (a) plots the prediction for rejection based on the ground of non-obviousness, subfigure (b) plots
the prediction for rejection based on the ground of lack of novelty, subfigure (c) plots the prediction for
rejection based on the ground of inadequate writing, subfigure (d) plots the prediction for rejection based on
the ground of not following the eligibility criteria, panel (e) plots the prediction of the log number of citations
after granting among granted patents, and subfigure (f) plots the prediction of Kogan et al. (2017)’s measure
for patent market return. AUC stands for Area Under the Curve, which measures the overall diagnostic
accuracy of the predictor.
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Figure A.3: The gender gap in initial allowance, by the number and share of female inventors
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Note: This Figure plots the difference in initial allowance probability between mixed gender to all male or
unknown teams. Subfigure (a) plots this relationship by share female inventors, and subfigure (b) plots this
relationship by the number of female inventors. Bars indicate 95% confidence intervals.

Figure A.4: Fully Interacted Regression of Ebbedings with Gender
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Note: This figure plots the estimated coefficients of the 2048 BERT embeddings from a regression of an
indicator for initial allowance on embeddings, separately for patents with at least one female inventor
(horizontal axis) and patents with all male inventors or unknown gender (vertical axis). The green line
shows the näıve regression line, while the black line shows the bias-corrected slope, accounting for excess
noise in the coefficient estimates. ”Rho” in the bottom-right corner refers to the correlation, and ”rho UB”
refers to the bias-corrected correlation.
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Figure A.5: The gender gap in initial allowance over time
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Note: This Figure plots the difference in initial allowance probability between mixed gender to all male
or unknown teams over time. The blue dots present the estimated coefficient from the linear regression
described in Equation (??), and the green dots present the coefficient on any female inventor indicator for
a separate regression on the sample of applications filled in that year, controlling for the patent BERT
embeddings. Bars indicate 95% confidence intervals.

Figure A.6: Balance test for examiner characteristics using alternative female definitions
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Note: This Figure plots the relationship between examiner characteristics with different measures of patent
“femaleness” with and without controlling for the patent application text embeddings. The gray dots are
the estimates from an uncontrolled OLS regression, and the blue dots are the estimates from an OLS
regression controlling linearly for the patent text embeddings. Bars indicate 95% confidence intervals based
on robust standard errors.
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Figure A.7: Balance test, alternative female variables
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Note: This Figure plots the relationship between technology center indicators (subfigures (a) and (b)),
claim statistics (subfigures (c) and (d)), and the gender composition of the team of inventors with and
without controlling for the patent application text embeddings. The gray dots display the estimates from
an uncontrolled OLS regression, and the blue dots display the estimates from an OLS regression controlling
linearly for the patent text embeddings. Bars indicate 95% confidence intervals based on robust standard
errors.

69



Figure A.8: Balance test by year
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Note: This Figure plots the relationship between patent application and examiner characteristics and the
gender of the inventors’ team with and without controlling for the patent application text embeddings.
The gray dots are the estimates from an uncontrolled OLS regression, and the blue dots are the estimates
from an OLS regression controlling linearly for the patent text embeddings. Bars indicate 95% confidence
intervals based on robust standard errors.
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Table A.1: Adjusted R2 on initial allowance and any female by embedding layer

Adj. R2 Partial R2, art-unit-yr class Partial R2, examiner

Claim
layer

Description
layer

# of
embeddings

IA Any
female

IA Any
female

IA Any
female

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(0, 0, 0) (1, 0, 0) 1023 0.0499 0.0975 0.0213 0.0377 0.0238 0.0381
(0, 0, 0) (0, 0, 1) 1023 0.0499 0.0939 0.0222 0.0349 0.0250 0.0351
(0, 0, 0) (0, 1, 0) 1023 0.0500 0.0961 0.0217 0.0365 0.0244 0.0368
(0, 0, 0) (1, 1, 0) 2046 0.0535 0.1032 0.0248 0.0440 0.0276 0.0444
(0, 0, 0) (0, 1, 1) 2046 0.0544 0.1016 0.0256 0.0426 0.0287 0.0429
(0, 0, 0) (1, 1, 1) 3069 0.0566 0.1067 0.0280 0.0483 0.0311 0.0486
(1, 0, 0) (0, 0, 0) 1023 0.0616 0.0908 0.0329 0.0312 0.0375 0.0315
(0, 1, 0) (0, 0, 0) 1023 0.0626 0.0902 0.0342 0.0308 0.0390 0.0311
(0, 0, 1) (0, 0, 0) 1023 0.0639 0.0893 0.0361 0.0302 0.0414 0.0304
(1, 1, 0) (0, 0, 0) 2046 0.0668 0.0950 0.0382 0.0360 0.0434 0.0362
(1, 0, 0) (1, 0, 0) 2046 0.0673 0.1014 0.0382 0.0425 0.0434 0.0428
(1, 0, 0) (0, 1, 0) 2046 0.0675 0.1010 0.0383 0.0421 0.0436 0.0424
(1, 0, 0) (0, 0, 1) 2046 0.0675 0.1005 0.0385 0.0417 0.0439 0.0420
(0, 1, 0) (0, 1, 0) 2046 0.0682 0.1005 0.0393 0.0417 0.0448 0.0420
(0, 1, 0) (1, 0, 0) 2046 0.0684 0.1015 0.0393 0.0426 0.0448 0.0429
(0, 1, 1) (0, 0, 0) 2046 0.0684 0.0947 0.0399 0.0358 0.0454 0.0361
(0, 0, 1) (0, 0, 1) 2046 0.0693 0.0991 0.0411 0.0407 0.0470 0.0409
(1, 0, 0) (1, 1, 0) 3069 0.0696 0.1060 0.0407 0.0479 0.0461 0.0482
(1, 0, 0) (0, 1, 1) 3069 0.0702 0.1051 0.0412 0.0470 0.0466 0.0473
(0, 1, 0) (1, 1, 0) 3069 0.0706 0.1060 0.0418 0.0479 0.0473 0.0482
(0, 1, 0) (0, 1, 1) 3069 0.0710 0.1047 0.0422 0.0467 0.0479 0.0470
(1, 1, 0) (1, 0, 0) 3069 0.0716 0.1044 0.0427 0.0462 0.0484 0.0465
(1, 1, 0) (0, 1, 0) 3069 0.0717 0.1040 0.0428 0.0458 0.0485 0.0461
(1, 1, 0) (0, 0, 1) 3069 0.0718 0.1036 0.0430 0.0455 0.0488 0.0458
(0, 0, 1) (1, 1, 0) 3069 0.0722 0.1061 0.0435 0.0480 0.0493 0.0483
(0, 0, 1) (0, 1, 1) 3069 0.0725 0.1046 0.0438 0.0466 0.0498 0.0469
(0, 1, 1) (0, 1, 0) 3069 0.0730 0.1037 0.0443 0.0456 0.0503 0.0459
(0, 1, 1) (1, 0, 0) 3069 0.0731 0.1046 0.0443 0.0464 0.0502 0.0467
(0, 1, 1) (0, 0, 1) 3069 0.0731 0.1032 0.0446 0.0452 0.0506 0.0455
(1, 1, 0) (1, 1, 0) 4092 0.0732 0.1080 0.0448 0.0507 0.0505 0.0510
(1, 1, 0) (1, 0, 1) 4092 0.0736 0.1079 0.0452 0.0506 0.0510 0.0509
(1, 0, 1) (1, 1, 0) 4092 0.0745 0.1082 0.0462 0.0509 0.0522 0.0512
(1, 0, 1) (1, 0, 1) 4092 0.0746 0.1077 0.0463 0.0504 0.0524 0.0507
(0, 1, 1) (0, 1, 1) 4092 0.0748 0.1070 0.0466 0.0498 0.0527 0.0501
(0, 1, 1) (1, 0, 1) 4092 0.0749 0.1080 0.0466 0.0507 0.0527 0.0510
(1, 0, 1) (0, 1, 1) 4092 0.0749 0.1073 0.0465 0.0500 0.0526 0.0503
(1, 1, 1) (1, 1, 1) 6138 0.0779 0.1123 0.0506 0.0567 0.0568 0.0570

Note: This table presents the adjusted R2 and the partial adjusted R2 from running regressions of initial allowance and a mixed gender
indicator on different layers of text embeddings. Column 1 displays the claims text embeddings layer, column 2 presents the description
text embeddings layer, and column 3 displays the total number of embeddings in the estimated regression, where each embedding layer
includes 1023 features.
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Table A.2: Relationship between omitted covariates and initial allowance

(1)
IA

Female attorney -0.0018
(0.0008)

Asian attorney -0.0009
(0.0005)

Attorney experience 0.0028
(0.0006)

Team size -0.0008
(0.0002)

foreign p 0.0015
(0.0012)

# of applications 1220508

Note: This table reports the relationship between omitted covariation
and initial allowance when estimating the examiner-level gender bias
conditional of text embeddings. The table presents the coefficients on
female patent attorney gender, Asian attorney, number of previously
granted patents, inventors’ team size, and indicator for foreign priority.
The model includes a fixed effect for every examiner, and a fixed effect
for every examiner times an indicator for having at least one female in
the inventors’ team. Robust standard errors are reported in parentheses.

72



Table A.3: Mean gender gap in initial allowance for single gender teams

IA IA IA IA
(1) (2) (3) (4)

All female vs no female -0.0364 -0.0112 -0.0010 -0.0002
( 0.0013) ( 0.0014) ( 0.0014) ( 0.0014)

AUC 0.5170 0.7612 0.7490 0.8071
Adj. R2 0.0004 0.0688 0.0693 0.1050

# of applications 1,062,510 1,062,369 1,062,510 1,062,369
# of examiners 8,519 8,519 8,519 8,519

Sole inventors -0.0345 -0.0109 -0.0013 -0.0006
( 0.0015) ( 0.0015) ( 0.0016) ( 0.0016)

AUC 0.5170 0.7753 0.7420 0.8239
Adj. R2 0.0008 0.0691 0.0743 0.1085

# of applications 428,330 428,040 428,330 428,040
# of examiners 8,516 8,516 8,516 8,516

Art-unit-year class FE No Yes No Yes
Embeddings No No Yes Yes

Note: This table reports the OLS coefficients adjusted R2, and Area Under the
Curve (AUC) from regressions of an indicator for initial allowance on the gender
of the team of inventors, using subsamples with single-gender teams. Panel (i)
reports the estimates from the subsample of patent applications with all female
inventors teams vs. no female inventors, and panel (ii) reports the subsample
of sole inventors. Robust standard errors are reported in parentheses.
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Table A.4: Within examiner variance in gender bias, proportion female

Female Male Unknown
(1) (2) (3)

(i) OLS gap
w/o emmbeddings -0.0288 -0.0439 -0.0459

(0.0018) (0.0017) (0.0033)
w/ emmbeddings 0.0001 -0.0021 -0.0008

(0.0019) (0.0017) (0.0033)
(ii) Fixed-effect regression

Std(αj) 0.071 0.094 0.097
Std(βj) . 0.032 0.073

β̄j -0.001 -0.002 -0.000
# of examiners 1,995 5,001 1,339
# of apps 289,703 732,605 194,038

Mean IA 0.062 0.090 0.091
Share mixed teams 0.087 0.061 0.065

Note: This table presents the distribution of gender bias by
the gender of the examiner using the proportion of females in
the team of inventors as a measure for the “femaleness” of
the patent application. Panel (i) presents the mean gender
gap separately by examiner gender with and without controlling
for the text embeddings. Panel (ii) presents the Kline et al.
(2020) bias-corrected variance components of the gender bias and
leniency estimated in a linear regression controlling for patent text
embeddings. All variance components are weighted by the number
of patent applications.
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Table A.5: Within examiner gender variance in gender bias, female ranked first or second

Female Male Unknown
(1) (2) (3)

OLS gap
w/o emmbeddings -0.0163 -0.0238 -0.0253

(0.0012) (0.0011) (0.0020)
w/ emmbeddings -0.0003 -0.0012 -0.0016

(0.0013) (0.0011) (0.0020)
Fixed-effect regression

Std(αj) 0.070 0.094 0.097
Std(βj) 0.013 0.025 0.017

β̄j -0.002 -0.001 0.000
# of examiners 1,953 4,875 1,319
# of apps 288,120 726,023 192,926

Mean IA 0.062 0.090 0.091
Share mixed teams 0.133 0.096 0.104

Note: This table presents the distribution of gender bias by
the gender of the examiner using an indicator for having at
least one female ranked first or second in the inventors’ team
as a measure for the “femaleness” of the patent application.
Panel (i) presents the mean gender gap separately by examiners’
gender with and without controlling for the text embeddings.
Panel (ii) presents the Kline et al. (2020) bias-corrected
variance components of examiners’ gender bias and leniency
estimated in a linear regression controlling for patent text
embeddings. All variance components are weighted by the
number of patent applications. Robust standard errors are
reported in parentheses.
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Table A.6: Robustness to other controling for other non-text characteristics

(1) (2) (3) (4)

(i) OLS gap
Any female -0.0010 -0.0010 -0.0010 -0.0011

(0.0007) (0.0007) (0.0007) (0.0007)

Other effect -0.0002 -0.0008 0.0056
(0.0006) (0.0006) (0.0009)

# of applications 1,220,512 1,220,512 1,220,512 1,220,512
# of examiners 8,519 8,519 8,519 8,519

(ii) Examiner heterogeneity
Std. any female 0.023 0.022 0.022 0.023
Std. other effect 0.022 0.023 0.039
Correlation 0.024 0.008 0.031

# of applications 1,215,230 1,214,970 1,216,346
# of examiners 8,300 8,300 8,335

Characteristic - Any foreign Asian name Lawyer experience

Note: This table reports the robustness of the mean gender bias and its variability across examiners
to the inclusion of other non-text characteristics. Panel (i) reports the coefficients on mixed-
gender teams and the other characteristics estimated in an OLS regression controlling for text
embeddings. Panel (ii) reports the bias-corrected standard deviation of the examiner gender
gap and examiner level sensitivity to other characteristics estimated in a regression on initial
allowance on examiner fixed effects, examiner time gender fixed effects, and examiner times other
characteristic fixed effects. All the regressions include controls for the patent text embeddings.
All variance components are weighted by the number of patent applications. The names of the
other characteristics are displayed in the last row.
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Table A.7: Robustness to controling for text similairy

IA IA IA IA
(1) (2) (3) (4)

(i) ALL (N=1,220,512)
Any female -0.02004 -0.02089 -0.00105 -0.00102

( 0.00064) ( 0.00064) ( 0.00065) ( 0.00065)
Similarity index -0.43677 0.04813

( 0.00816) ( 0.01431)

(ii) High similarity (N= 406,745)
Any female -0.02453 -0.02471 -0.00045 -0.00047

( 0.00116) ( 0.00116) ( 0.00118) ( 0.00118)
Similarity index -0.19638 0.09698

( 0.01618) ( 0.02775)

(iii) Mid similarity (N= 406,741)
Any female -0.02237 -0.02240 -0.00202 -0.00202

( 0.00113) ( 0.00113) ( 0.00116) ( 0.00116)
Similarity index -0.59124 -0.08136

( 0.06712) ( 0.06979)

(iv) Low similarity (N= 406,742)
Any female -0.01489 -0.01518 -0.00029 -0.00028

( 0.00101) ( 0.00101) ( 0.00104) ( 0.00104)
Similarity index -1.21495 -0.17161

( 0.03148) ( 0.04601)

Embeddings No No Yes Yes

Note: This table illustrates the robustness of the gender gap estimates to controlling for the
cosine similarity between the patent application and all the patent applications filed in the
same technology center during the three years preceding its filing. Column (1) report the mean
uncontrol allowance gap between mixed gender and all patent applications; column (2) reports
the estimate for a model that additionally controls for the patent cosine similarity; column (3)
reports the gender gap conditional on the on the BERT embeddings, and column (4) reports
the gender gap conditional on both the BERT embeddings and the cosign similarity index.
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B Data Appendix

B.1 Patent Data

The main data source is the USPTO Patent Examination Research Dataset (Graham et al.,
2015) which includes the universe of all public patent applications available online in the
Public Patent Application Information Retrieval system (Public PAIR).29 For every patent
application, the Public PAIR data includes information on inventors’ first and last name
together with additional variables such as country, application number, publication number,
the grant date if granted, and examiners, art-unit, and technological classes and sub-classes
identifiers.

This dataset is merged to several other datasets:

1. The USPTO Patents View data.30 It includes detailed information on both granted
patents and patent applications. Specifically, this source includes the list of all the
patents it cites, including granted and non-granted patents, and an implied identifier
for inventors.

2. The Patent Claims Research Dataset (Marco et al., 2019).31 This data-set includes
detailed information on the number of claims and change in claims of patent applications
and granted patent.

3. ”Google Patents Research Data” from which I merged the abstract and description of
each patent application.

4. Examiners roster, pay scale, and education data. Frakes and Wasserman (2014)
generously provided me with detailed roster data and pay scale dated from 1994 they
received through FOIA requests. These data are used to determine the start year of
examiners (see detail below) and their years of experience.

5. Kogan et al. (2017) patent market value data. They provide estimates of the market
value using a series of event study designs of the stock market return of patents among
publicly traded patents.

29The data can be found here: https://www.uspto.gov/learning-and-resources/
electronic-data-products/patent-examination-research-dataset-public-pair

30https://www.patentsview.org/download/
31https://www.uspto.gov/learning-and-resources/electronic-data-products/

patent-claims-research-dataset
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6. Patent Maintenance Fee Events.32 This dataset records all the maintenance fee events
for granted patents granted from September 1, 1981. These fees are due 4, 8, and 12
years after the patent grant and are increasing over time.

7. USPTO Office Action Rejection.33 ‘Office action” is a written notification to the
applicant of the examiner’s decision on patentability. It generally discloses the reasons
for any rejections, objections, or requirements and includes relevant information or
references that the applicant may find useful for responding to the examiner and
deciding whether to continue prosecuting the application. This data set includes all
the mailed office actions from 2008 to 2017. It includes information on the grounds for
rejections raised.

Sample restriction: I restrict the sample to utility34 patent applications filed after
November 29th, 200035 and before January 1st, 2014. To avoid detecting differential behavior
to non-US inventors, and since the gender identification relies on the gender distributions
of first names provided by the US Social Security Administration, I include only patent
applications written by US inventors in my analysis.

B.2 Variable Construction

B.2.1 Inventors’ name coding

The application data includes for every patent application the first name, middle name, and
last name of each inventor. To assign gender and an indicator for a foreign name I follow
the following procedure. For every first name, I assign a probability of being a woman based
on the gender name distribution provided by the US Security Administration (SSA).36 In
cases where the first name is missing or includes only the first letter, I assign gender to the
middle name.37 Applications with at least one inventor with missing first and middle names
are excluded from the analysis.

I classify a name as male if the threshold probability for male names in the SSA data is
higher than 90%. Since women make up roughly 11% of the inventors and men account for

32https://www.uspto.gov/learning-and-resources/electronic-data-products/
additional-patent-data-products

33https://developer.uspto.gov/product/patent-application-office-actions-data-stata-dta-and-ms-excel-csv
34Utility patents are granted for the “invention of a new and useful process, machine, manufacture, or

composition of matter” (USPTO 2010).
35Since the American Inventors Protection Act of 1999 almost all the USPTO patent applications filed

after 29 November 2000 were published online, regardless of whether they are granted or not.
36https://www.ssa.gov/oact/babynames/limits.html
37Although the middle name could potentially be of a gender different from the first-name, I assume that

from the perspective of the examiners, this is the name that embodies the gender signal.
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80%,38 I set the women threshold to be higher, at 98.5%, roughly equating the type one error
across gender, assuming the distribution of names in the general population is the same in
the inventor population. Using this protocol I could assign gender to 75% of the names in
my final sample.

B.2.2 Examiner Gender Coding

Unlike with inventors’ gender coding, my goal was to assign gender to all possible examiners.
Therefore I use a collection of data sources by assigning gender to each name in the following
order:

I assign gender to examiners using the following data sources by order in which they are
used:

1. The US SSA administrative baby names by gender.

2. Name gender published by the United Kingdom Intellectual Property Organization.
This dataset is binary, a name is classified as either male or female.

3. WIPO Dataset.39 Name gender dataset published by World Intellectual Property
Organization. Its main advantage is that it includes names of different languages
across countries.

4. gender-guesser Python package.

5. After exhausting all the datasets mentioned before, I use https://genderize.io/Genderize.io
for the detection of non-East-Asian names because they are known to not be accurate
for Asian names.40

As a result, I could identify 80% of the examiners in my data set.

B.2.3 Ethnicity

To identify the ethnicity of examiners and inventors I apply the raceBERT algorithm (Parasurama,
2021) that was trained on the U.S. Florida voter registration data set using a BERT architecture.
The model predicts the likelihood of a name belonging to 5 U.S. census race categories
(White, Black, Hispanic, Asian & Pacific Islander, American Indian & Alaskan Native).

38Lissoni et al. (2018) find that in 2016 women account for 12% of the inventors. Following their analysis
and using their data that identified the gender of inventors of granted patents using by country name
distribution, I find that in the time period of this study, women account for 11% of the inventors.

39https://www.wipo.int/publications/en/details.jsp?id=4125
40For more details see https://jmla.pitt.edu/ojs/jmla/article/view/1289
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Using this algorithm I classify an Asian name as either East Asian or Japanese. Using this
algorithm I find that 46% of the unique inventor names in my data are Asians.

B.2.4 Examiners’ Start Year and Years of Experience

To calculate the years of experience of each examiner and start year I use two sources of
information. First, I use the roster data from Frakes and Wasserman (2014), which includes
the years 1992-2014. My sample starts before 1992, so I fill in the missing information by
identifying the first office action by examiners using the transaction data set provided in
the public PAIR data-set. Specifically, any examiner application transactions with “DOCK”
record indicates an assignment or a change in assignment of an application’s examiner,
therefore for every application, I use the date of the most recent “DOCK” record to indicate
the date on which the application is docketed to the current examiner.

There is a concern that the start year classification using the transaction data is downward
biased as the examiner records in the Public PAIR data set assign the application’s examiner
as the one who was assigned to process or archive the application at the time of disposal.
In an effort to account for that, I modify the start year of examiners that have suspiciously
long “gap years”, meaning they have no assigned patents after the start years. I do so by
defining the start year only if the examiner doesn’t have a gap size of a certain size. I find the
optimal gap size by minimizing the distance between the start year from the administrative
FOIA records and the implied start year for examiners whose start year is greater than 1994
and apply this rule to the examiners with missing information.

B.2.5 Attorneys

The Public PAIR data set has a table named “attorney agent” which records the first name,
last name, and practice category of patent attorney(s) in each application. Interestingly,
the filing of patent applications seems to have a large number of attorneys/agents involved
where the average number of attorneys/agents is 28.20.

C Leave out Estimation of the Variance Component

I estimate the following OLS regression:

yi = αJ(i) + βJ(i)Fi + x′iγ + ϵi

where yi is the outcome of interest, usually an indicator for initial allowance, Fi indicates
the femaleness of the patent application, usually an indicator for a mixed gender patent, αj
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are examiner fixed effects, βj is the examiner level tendency to overvalue patent written by
female inventors, and xi is a vector of over 2,000 continuous embeddings. This specification
can be written as:

yi =X ′iη + ϵi

where Xi collects the vectors of examiner indicators, examiner times gender indicators, and
the embedding features. Using that matrix representation, any variance component can be
written in a quadratic form:

σ2 = δ′Aδ

where δ = (α′, β′)′ are the collected α = (α1, .., αJ)′, and β = (β1, .., βJ)′ examiner level
coefficients, and A is the relevant weighting matrix. Kline et al. (2020) suggest estimating:

σ̂2 = δ̂′Aδ̂ −
n

∑
i=1
Biiξ̂

2
i

where Bii = X ′iS−1
ii AS

−1
ii Xi measures the influence of the i’s squared error ϵ2

i , Sii = ∑iXiX ′i ,
ξ2
i = V(ϵi∣Xi) is the variance of the i’s error, ξ̂2

i =
yi(yi−X

′

iη)

1−Pii
is a the leave-i-out estimator

described in Kline et al. (2020), and Pii = X ′iS−1
ii Xi is the leverage of the i’s observation on

the estimate of η̂. Kline et al. (2020) provide the conditions on the Xi matrix that ensure
consistency of the bias corrected estimator.

Computation of σ̂2 is intensive as it requires computing the Bii and Pii from a model with
over 18 thousand parameters. Therefore, as suggested in Kline et al. (2020) I exploit the
random projection method by Lindenstrauss (1984) when approximating σ̂2. The Matlab
code provided by Kline et al. (2020) relies on MATLAB’s preconditioned conjugate gradient
routine pcg which solves systems of linear equations in large sparse problems. However,
in my settings, Xi includes a dense embedding component preventing the algorithm from
converging. To accommodate this problem I orthogonalize the embeddings component
matrix Ei = QR using QR decomposition so Q′iQi equals to identity matrix that can be
represented as a sparse matrix and enables convergence of the pcg function.
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C.1 Covariance Across Different Regressions

In Section 9.1 I estimate the following model:

IAi = αj(i) + βj(i)Fi + x′iγ + ϵi
IRi = αRj(i) + βRj(i)Fi + x′iγR + ϵRi

where IAi is an indicator for initial allowance and IRi is an indicator for the rejection reason
in the first round of examination. The variance component of interest is cov(βj(i), βRj(i)), the
covariance between the gender gap in initial allowance and the gender gap in that particular
rejection reason. Writing this model in a matrix representation:

IAi =X ′iη + ϵi
IRi =X ′iηR + ϵRi

we can easily see that both of the regressions share the same design matrix Xi described
above. As described in Lachowska et al. (2022) the estimator of the covariance using the
leave-out procedure is therefore:

ˆcov(βj(i), βRj(i)) = β̂
′Aβ̂R −

n

∑
i=1
Biiξ̂

2
i12

where β = (β1, .., βJ)′ are the collected examiner level gender bias in initial allowance and
βR = (βR1 , .., βRJ )′ are the collected examiner level gender bias Ri, Ai is the relevant weighting
matrix, Bii is identical to the one described in the previous section and ξ̂2

i12 =
IRi(IAi−Xiη̂)

1−Pii
is

the leave-i-out estimator of the covariance of the i’s error in the two regression models.

D Propensity Score Estimation

I estimate the propensity score probability of assignment to each examiner j using an OLS
regression. The advantage of using OLS instead of nonlinear models like logit or probit is
that OLS is less susceptible to bias caused by high dimensionality (Sur and Candès, 2019).41

To avoid overfitting, I estimate the model using cross-fitting: the sample is split into five
random groups, the model is trained on 4

5 of the sample, and the propensity scores are
calculated for the remaining fifth. Throughout the analysis, I trim propensity scores with

41Future drafts will compare the OLS propensity score with a logit propensity score that incorporates the
correction proposed in Yadlowsky et al. (2021).
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values lower than 0.0003% or higher than 99.9997%.42 Figure D.1 shows that the results are
robust to the timing cutoff. Figure XX provides evidence for overlap across examiners by
selected art units. In the next subsection, I explain how I estimate the variance component
with the inverse probability weights.

Figure D.1: Gender gap in initial allowance by trimming cuttof
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Note: This figure plots the estimated gender gap and 95% confidence intervals in initial allowance. The blue
dots present the gender gap from an OLS regression that controls for embeddings linearly. The purple dots
present the results from an IPW model, where the propensity score of each examiner was estimated by an
OLS regression.

D.1 Variance Component With IPW

There are J examiners, each examiner examines nj patents, njf of female inventors, and
njm of male inventors. Denote yij the (residualized) outcome of each patent examined by
examiner j. Assume (yij)nj

i=1 are independent. Denote yijg the outcome of gender g ∈ {0,1}
Let θjf = E[yji∣F = 1], θjm = E[yji∣F = 0], and define for every examiner the gender gap:

βj = θjf − θjm
42A small cutoff is used to avoid dropping too many observations and altering the analysis sample.
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The variance of examiners gender gaps:

V(βj) =
1
J

J

∑
j=1
β2
j − (

1
J

J

∑
j=1
βj)

= J − 1
J2

J

∑
j=1
β2
j −

2
J2

J

∑
j=2

j−1

∑
k=1

βjβk

The unbiased estimate analog is:

V̂(βj) =
J − 1
J2

J

∑
j=1
β̂2
j −

2
J2

J

∑
j=2

j−1

∑
k=1

β̂jβ̂k

where

β̂j =
1
njf

njf

∑
i=1
yijf −

1
njm

njm

∑
i=1

yijm

and

β̂2
j = θ̂2

jf + θ̂2
jm − 2θ̂jfθjm

where the unbiased estimator for each element is:

θ̂2
jg = (

njg
2 )

njg

∑
l=2

l−1
∑
k=1

yljgykjg

for every group g ∈ {0,1}, and

θ̂jfθjm =
1

njfnjm

njf

∑
l=1

njm

∑
k=1

yljfykjm

With a set of weights wif for females and wim for males, the variance of the gender gap
is:

ñjg = ∑wig

θ̂2
jg =

1
ñjf ñjm

njf

∑
l=2

njm

∑
k=1

wlfwkmyljgykjg

θ̂jfθjm =
1

ñjf ñjm

njf

∑
l=1

njm

∑
k=1

wlfwkmyljfykjm

Table D.1 shows the main results.
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Table D.1: Variance components using inverse probability weighting

(1) (2)
KSS IPW

Std(αj) 0.090 0.0930
Std(βj) 0.024 0.0174

β̄j -0.001 -0.0051
# of examiners 8335 7550
# of applications 1,216,346 1,220,195

Note: This table reports the variance components of examiners leniency (αj)
and examiners gender bias (βj). Column (1) reports the variance components
from Table 5 by estimating a linear model with examiners and examiners times
gender fixed effect controlling for embeddings linearly. Column (2) reports the
variance component by first estimating the propensity score of each examiner
and application gender only among examiners with at least 100 applications.
And then estimating the variance component using the leave-one-out formula,
reweighting the observation using the propensity score.
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